1
|
Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022; 13:1057349. [PMID: 36465616 PMCID: PMC9713703 DOI: 10.3389/fendo.2022.1057349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.
Collapse
Affiliation(s)
- Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- *Correspondence: Mario Chiong,
| |
Collapse
|
2
|
An approach to early stage detection of atherosclerosis using arterial blood pressure measurements. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Radchenko GD, Sirenko YM. Prognostic Significance of Systemic Arterial Stiffness Evaluated by Cardio-Ankle Vascular Index in Patients with Idiopathic Pulmonary Hypertension. Vasc Health Risk Manag 2021; 17:77-93. [PMID: 33731998 PMCID: PMC7957228 DOI: 10.2147/vhrm.s294767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In a previous study, the cardio-ankle vascular index (CAVI) was increased significantly in idiopathic pulmonary arterial hypertension (IPAH) patients compared to the healthy group and did not much differ from one in systemic hypertensives. In this study the relations between survival and CAVI was evaluated in patients with IPAH. PATIENTS AND METHODS We included 89 patients with new-diagnosed IPAH without concomitant diseases. Standard examinations, including right heart catheterization (RHC) and systemic arterial stiffness evaluation, were performed. All patients were divided according to CAVI value: the group with CAVI ≥ 8 (n = 18) and the group with CAVI < 8 (n = 71). The mean follow-up was 33.8 ± 23.7 months. Kaplan-Meier and Cox regression analysis were performed for the evaluation of our cohort survival and the predictors of death. RESULTS The group with CAVI≥8 was older and more severe compared to the group with CAVI< 8. Patients with CAVI≥8 had significantly reduced end-diastolic (73.79±18.94 vs 87.35±16.69 mL, P<0.009) and end-systolic (25.71±9.56 vs 33.55±10.33 mL, P<0.01) volumes of the left ventricle, the higher right ventricle thickness (0.77±0.12 vs 0.62±0.20 mm, P < 0.006), and the lower TAPSE (13.38±2.15 vs 15.98±4.4 mm, P<0.018). RHC data did not differ significantly between groups, except the higher level of the right atrial pressure in patients with CAVI≥ 8-11.38±7.1 vs 8.76±4.7 mmHg, P<0.08. The estimated overall survival rate was 61.2%. The CAVI≥8 increased the risk of mortality 2.34 times (CI 1.04-5.28, P = 0.041). The estimated Kaplan-Meier survival in the patients with CAVI ≥ 8 was only 46.7 ± 7.18% compared to patients with CAVI < 8 - 65.6 ± 4.2%, P = 0.035. At multifactorial regression analysis, the CAVI reduced but saved its relevance as death predictor - OR = 1.13, CI 1.001-1.871. SUMMARY We suggested the CAVI could be a new independent predictor of death in the IPAH population and could be used to better risk stratify this patient population if CAVI is validated as a marker in a larger multicenter trial.
Collapse
Affiliation(s)
- Ganna D Radchenko
- Department of Symptomatic Hypertension, “National Scientific Center “The M.D. Strazhesko Institute of Cardiology”” of National Academy of Medical Science, Kyiv, Ukraine
| | - Yuriy M Sirenko
- Department of Symptomatic Hypertension, “National Scientific Center “The M.D. Strazhesko Institute of Cardiology”” of National Academy of Medical Science, Kyiv, Ukraine
| |
Collapse
|
4
|
Shi Z, Wang J, Chen S, Dai H, Huang Y. Relationship between A1166C polymorphism of angiotensin II type 1 receptor gene and arteriosclerosis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e24407. [PMID: 33530239 PMCID: PMC7850680 DOI: 10.1097/md.0000000000024407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Arteriosclerosis has genetic correlation. Many studies have shown that angiotensin II type 1 receptor (AT1R) gene A1166C polymorphism is highly associated with arteriosclerosis, but there is no evidence-based basis. The purpose of this study is to systematically evaluate the relationship between AT1R gene A1166C polymorphism and arteriosclerosis. METHODS The search time is set from the establishment of the database in December 2020 in this study. The search database include China National Knowledge Infrastructure (CNKI), Wanfang, VIP and China Biology Medicine disc (CBM), PubMed, EMBASE, Web of Science, and the Cochrane Library. The subjects are observational studies on the relationship between AGTR1 A1166C polymorphism and arteriosclerosis (including case-control study, cross-sectional study, and cohort study). The language is limited to English and Chinese. The data of the included study are extracted and the literature quality is evaluated by 2 researchers independently. The data are statistically analyzed by Stata 16.0 software. RESULTS This study will use pulse wave velocity as an index to evaluate arteriosclerosis to explore the relationship between AT1R gene A1166C polymorphism and arteriosclerosis. CONCLUSION This study will provide evidence-based medicine for elucidating the genetic tendency of arteriosclerosis. ETHICS AND DISSEMINATION Private information from individuals will not be published. This systematic review also does not involve endangering participant rights. Ethical approval will not be required. The results may be published in a peer-reviewed journal or disseminated at relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/V6E2Y.
Collapse
|
5
|
Madsen NL, Haley JE, Moore RA, Khoury PR, Urbina EM. Increased Arterial Stiffness Is Associated With Reduced Diastolic Function in Youth With Obesity and Type 2 Diabetes. Front Pediatr 2021; 9:781496. [PMID: 34912763 PMCID: PMC8666894 DOI: 10.3389/fped.2021.781496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Increased arterial stiffness is associated with diastolic dysfunction in adults. Data in youth are lacking, so we examined the impact of arterial stiffness on diastolic function in youth. Methods: We obtained diastolic function and augmentation index, pulse wave velocity, brachial artery distensibility, and carotid stiffness on 612 youth [10-24 years, 65% female, 38% normal weight, 36% obese, and 26% with type 2 diabetes mellitus (T2DM)]. Participants were classified as compliant (C) vs. stiff (S) arteries based on seven arterial stiffness parameters [Global Stiffness Index (GSI), S = GSI > 4). Mean differences in covariates were evaluated by Student's t-tests. A stepwise regression analysis was performed to determine if GSI was an independent predictor of diastolic function. Results: Lower diastolic function and more adverse cardiovascular disease (CVD) risk factors were present in the S group (n = 67) than the C group (n = 545) (p < 0.001). Covariates that were associated with diastolic dysfunction were higher GSI, male sex, higher body mass index (BMI), and systolic blood pressure (SBP) z-score (R 2 = 0.18 to 0.25; p ≤ 0.05). Conclusion: Adverse diastolic function is seen in youth with increased arterial stiffness independent of CVD risk factors. Interventions to improve arterial stiffness prior to clinical onset of diastolic dysfunction are needed to prevent development of heart failure.
Collapse
Affiliation(s)
- Nicolas L Madsen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jessica E Haley
- Department of Pediatrics, Rady Children's Hospital, San Diego, CA, United States
| | - Ryan A Moore
- The Heart Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, United States
| | - Philip R Khoury
- The Heart Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, United States
| | - Elaine M Urbina
- The Heart Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
6
|
Zhang J, Chowienczyk PJ, Spector TD, Jiang B. Relation of arterial stiffness to left ventricular structure and function in healthy women. Cardiovasc Ultrasound 2018; 16:21. [PMID: 30249257 PMCID: PMC6154895 DOI: 10.1186/s12947-018-0139-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interactions between the left ventricular (LV) and the arterial system, (ventricular-arterial coupling) are key determinants of cardiovascular function. However, most of studies covered multiple cardiovascular risk factors, which also contributed to the morphological and functional changes of LV. The aim of this study was to examine the relationship between arterial stiffness and LV structure and function in healthy women with a low burden of risk factors. METHODS Healthy women from the Twins UK cohort (n = 147, mean age was 54.07 ± 11.90 years) were studied. Arterial stiffness was evaluated by carotid-femoral pulse wave velocity (cf-PWV). LV structure and function were assessed by two-dimensional speckle tracking echocardiography. RESULTS cf-PWV was significantly associated with most measures of LV geometry and function, including relative wall thickness (RWT), E/e' ratio, global circumferential and radial strain, apical rotation and LV twist (each p < 0.05), but bore no relation to global longitudinal strain. After adjustment for age, body mass index, blood pressure and heart rate, cf-PWV was significantly correlated with RWT, global circumferential strain, apical rotation and LV twist (β = 0.011, - 0.484, 1.167 and 1.089, respectively, each p ≤ 0.05). CONCLUSIONS In healthy women with a low burden of risk factors, elevated arterial stiffness was intimately interwoven with increased LV twisting even before LV dysfunction becomes clinically evident.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular imaging, Wuhan, China
| | - Philip J Chowienczyk
- King's College London British Heart Foundation Centre, Department of Clinical Pharmacology, St. Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, UK
| | - Benyu Jiang
- King's College London British Heart Foundation Centre, Department of Clinical Pharmacology, St. Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK.
| |
Collapse
|
7
|
LeBlanc AJ, Kelm NQ. Thrombospondin-1, Free Radicals, and the Coronary Microcirculation: The Aging Conundrum. Antioxid Redox Signal 2017; 27:785-801. [PMID: 28762749 PMCID: PMC5647494 DOI: 10.1089/ars.2017.7292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Successful matching of cardiac metabolism to perfusion is accomplished primarily through vasodilation of the coronary resistance arterioles, but the mechanism that achieves this effect changes significantly as aging progresses and involves the contribution of reactive oxygen species (ROS). Recent Advances: A matricellular protein, thrombospondin-1 (Thbs-1), has been shown to be a prolific contributor to the production and modulation of ROS in large conductance vessels and in the peripheral circulation. Recently, the presence of physiologically relevant circulating Thbs-1 levels was proven to also disrupt vasodilation to nitric oxide (NO) in coronary arterioles from aged animals, negatively impacting coronary blood flow reserve. CRITICAL ISSUES This review seeks to reconcile how ROS can be successfully utilized as a substrate to mediate vasoreactivity in the coronary microcirculation as "normal" aging progresses, but will also examine how Thbs-1-induced ROS production leads to dysfunctional perfusion and eventual ischemia and why this is more of a concern in advancing age. FUTURE DIRECTIONS Current therapies that may effectively disrupt Thbs-1 and its receptor CD47 in the vascular wall and areas for future exploration will be discussed. Antioxid. Redox Signal. 27, 785-801.
Collapse
Affiliation(s)
- Amanda J LeBlanc
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Natia Q Kelm
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| |
Collapse
|
8
|
Presystolic A wave may predict increased arterial stiffness in asymptomatic individuals. Blood Press Monit 2016; 21:144-8. [DOI: 10.1097/mbp.0000000000000176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Todaro MC, Khandheria BK, Longobardo L, Zito C, Cusmà-Piccione M, Di Bella G, Oreto L, Mohammed M, Oreto G, Carerj S. New diagnostic perspectives on heart failure with preserved ejection fraction: systolic function beyond ejection fraction. J Cardiovasc Med (Hagerstown) 2016; 16:527-37. [PMID: 25469729 DOI: 10.2459/jcm.0000000000000199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although preserved ejection fraction is found in more than 50% of patients with heart failure, its acceptance as a specific clinical entity is limited. More understanding of the physiopathology, early diagnosis and medical management is needed. With no existing systematic information in the literature, the aim of this review is to provide a comprehensive overview of the new imaging techniques for diagnosing heart failure with preserved ejection fraction, particularly in the early stages of the disease, underlying the pivotal role of new technologies such as two-dimensional speckle tracking echocardiography and vascular stiffness.
Collapse
Affiliation(s)
- Maria Chiara Todaro
- aClinical and Experimental Department of Medicine and Pharmacology, University of Messina, Messina, Italy bAurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, University of Wisconsin School of Medicine and Public Health, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zito C, Mohammed M, Todaro MC, Khandheria BK, Cusmà-Piccione M, Oreto G, Pugliatti P, Abusalima M, Antonini-Canterin F, Vriz O, Carerj S. Interplay between arterial stiffness and diastolic function. J Cardiovasc Med (Hagerstown) 2014; 15:788-96. [DOI: 10.2459/jcm.0000000000000093] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Aroor AR, DeMarco VG, Jia G, Sun Z, Nistala R, Meininger GA, Sowers JR. The role of tissue Renin-Angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness. Front Endocrinol (Lausanne) 2013; 4:161. [PMID: 24194732 PMCID: PMC3810594 DOI: 10.3389/fendo.2013.00161] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/11/2013] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies support the notion that arterial stiffness is an independent predictor of adverse cardiovascular events contributing significantly to systolic hypertension, impaired ventricular-arterial coupling and diastolic dysfunction, impairment in myocardial oxygen supply and demand, and progression of kidney disease. Although arterial stiffness is associated with aging, it is accelerated in the presence of obesity and diabetes. The prevalence of arterial stiffness parallels the increase of obesity that is occurring in epidemic proportions and is partly driven by a sedentary life style and consumption of a high fructose, high salt, and high fat western diet. Although the underlying mechanisms and mediators of arterial stiffness are not well understood, accumulating evidence supports the role of insulin resistance and endothelial dysfunction. The local tissue renin-angiotensin-aldosterone system (RAAS) in the vascular tissue and immune cells and perivascular adipose tissue is recognized as an important element involved in endothelial dysfunction which contributes significantly to arterial stiffness. Activation of vascular RAAS is seen in humans and animal models of obesity and diabetes, and associated with enhanced oxidative stress and inflammation in the vascular tissue. The cross talk between angiotensin and aldosterone underscores the importance of mineralocorticoid receptors in modulation of insulin resistance, decreased bioavailability of nitric oxide, endothelial dysfunction, and arterial stiffness. In addition, both innate and adaptive immunity are involved in this local tissue activation of RAAS. In this review we will attempt to present a unifying mechanism of how environmental and immunological factors are involved in this local tissue RAAS activation, and the role of this process in the development of endothelial dysfunction and arterial stiffness and targeting tissue RAAS activation.
Collapse
Affiliation(s)
- Annayya R. Aroor
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri Columbia School of Medicine, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Vincent G. DeMarco
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri Columbia School of Medicine, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia School of Medicine, Columbia, MO, USA
| | - Guanghong Jia
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri Columbia School of Medicine, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Ravi Nistala
- Department of Internal Medicine, Division of Nephrology, University of Missouri Columbia School of Medicine, Columbia, MO, USA
| | - Gerald A. Meininger
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia School of Medicine, Columbia, MO, USA
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - James R. Sowers
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri Columbia School of Medicine, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia School of Medicine, Columbia, MO, USA
- Dalton Cardiovascular Research Center, Columbia, MO, USA
- *Correspondence: James R. Sowers, University of Missouri Columbia School of Medicine, D109 Diabetes Center HSC, One Hospital Drive, Columbia, MO 65212, USA e-mail:
| |
Collapse
|
12
|
Affiliation(s)
- J Daemen
- Erasmus Medical Center, Thoraxcenter, Room Bd-412,'s Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands,
| |
Collapse
|
13
|
Kim HL, Im MS, Seo JB, Chung WY, Kim SH, Kim MA, Zo JH. The association between arterial stiffness and left ventricular filling pressure in an apparently healthy Korean population. Cardiovasc Ultrasound 2013; 11:2. [PMID: 23302225 PMCID: PMC3554540 DOI: 10.1186/1476-7120-11-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/07/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the association between arterial stiffness and left ventricular filling pressure in an apparently healthy Korean population. METHODS A total of 115 healthy subjects without known cardiovascular risk factors or overt heart disease who underwent both transthoracic echocardiography and brachial-ankle pulse wave velocity (baPWV) measurement at the same day during their routine check-ups were analyzed. RESULTS The mean age of study subjects was 52.8 ± 8.4 years, and 78 (67.8%) were men. The mean baPWV value was 1,325 ± 185 cm/s. Study subjects were divided into 3 groups according to E/E' value: subjects with E/E' < 8, 8-12.9 and E/E' ≥ 13. As E/E' increased, baPWV value increased gradually: baPWV in subjects with E/E' < 8, E/E' 8-12.9 and E/E' ≥ 13, were 1,261 ± 163, 1,345 ± 169, 1,569 ± 232 cm/s, respectively (p < 0.001). In multiple linear regression analyses, baPWV was significantly associated with E/E' (β = 0.371, p < 0.001) after controlling confounders including age, sex and body mass index. In receiver-operating characteristic (ROC) curve analysis, the sensitivity and specificity for detection of E/E' ≥ 10 were 78.6% and 59.8%, respectively with mean baPWV of 1,282 cm/s as the cut off value. The discriminatory capacity for predicting E/E' ≥ 10 was improved from an area under the ROC curve of 0.646 with age alone to 0.734 when baPWV was added (p < 0.001). CONCLUSIONS There is a significant association between baPWV and E/E' in an apparently healthy Korean population. BaPWV is useful as a simple and non-invasive method for early detection of increased LV filling pressure among these people.
Collapse
Affiliation(s)
- Hack-Lyoung Kim
- Cardiovascular Center, Seoul National University Boramae Medical Center, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|