1
|
Xu F, Zheng C, Xu W, Zhang S, Liu S, Chen X, Yao K. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Front Pharmacol 2024; 15:1364135. [PMID: 38510648 PMCID: PMC10953296 DOI: 10.3389/fphar.2024.1364135] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.
Collapse
Affiliation(s)
- Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Biswas A, Das S, Kapoor M, Shamsudheen KV, Jayarajan R, Verma A, Seth S, Bhargava B, Scaria V, Sivasubbu S, Rao V. Familial Hypertrophic Cardiomyopathy - Identification of cause and risk stratification through exome sequencing. Gene 2018; 660:151-156. [DOI: 10.1016/j.gene.2018.03.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 02/01/2023]
|
3
|
Harakalova M, Asselbergs FW. Systems analysis of dilated cardiomyopathy in the next generation sequencing era. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1419. [PMID: 29485202 DOI: 10.1002/wsbm.1419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/31/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Dilated cardiomyopathy (DCM) is a form of severe failure of cardiac muscle caused by a long list of etiologies ranging from myocardial infarction, DNA mutations in cardiac genes, to toxics. Systems analysis integrating next-generation sequencing (NGS)-based omics approaches, such as the sequencing of DNA, RNA, and chromatin, provide valuable insights into DCM mechanisms. The outcome and interpretation of NGS methods can be affected by the localization of cardiac biopsy, level of tissue degradation, and variable ratios of different cell populations, especially in the presence of fibrosis. Heart tissue composition may even differ between sexes, or siblings carrying the same disease causing mutation. Therefore, before planning any experiments, it is important to fully appreciate the complexities of DCM, and the selection of samples suitable for given research question should be an interdisciplinary effort involving clinicians and biologists. The list of NGS omics datasets in DCM to date is short. More studies have to be performed to contribute to public data repositories and facilitate systems analysis. In addition, proper data integration is a difficult task requiring complex computational approaches. Despite these complications, there are multiple promising implications of systems analysis in DCM. By combining various types of datasets, for example, RNA-seq, ChIP-seq, or 4C, deep insights into cardiac biology, and possible biomarkers and treatment targets, can be gained. Systems analysis can also facilitate the annotation of noncoding mutations in cardiac-specific DNA regulatory regions that play a substantial role in maintaining the tissue- and cell-specific transcriptional programs in the heart. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > RNA Methods.
Collapse
Affiliation(s)
- Magdalena Harakalova
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, Netherlands.,Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
4
|
de Gonzalo-Calvo D, Quezada M, Campuzano O, Perez-Serra A, Broncano J, Ayala R, Ramos M, Llorente-Cortes V, Blasco-Turrión S, Morales FJ, Gonzalez P, Brugada R, Mangas A, Toro R. Familial dilated cardiomyopathy: A multidisciplinary entity, from basic screening to novel circulating biomarkers. Int J Cardiol 2017; 228:870-880. [PMID: 27889554 DOI: 10.1016/j.ijcard.2016.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/23/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022]
Abstract
Idiopathic dilated cardiomyopathy has become one of the most prevalent inherited cardiomyopathies over the past decades. Genetic screening of first-degree relatives has revealed that 30-50% of the cases have a familial origin. Similar to other heart diseases, familial dilated cardiomyopathy is characterized by a high genetic heterogeneity that complicates family studies. Cli'nical screening, 12-lead electrocardiogram and transthoracic echocardiogram are recommended for patients and first-degree family members. Magnetic resonance also needs to be considered. Genetic technologies have become fundamental for the clinical management of this disease. New generation sequencing methods have made genetic testing feasible for extensive panels of genes related to the disease. Recently, new imaging modalities such as speckle-tracking, strain and strain rate or magnetic resonance, and circulating biomarkers such as non-coding RNAs, have emerged as potential strategies to help cardiologists in their clinical practice. Imaging, genetic and blood-based techniques should be considered together in the evaluation and testing of familial dilated cardiomyopathy. Here, we discuss the current procedures and novel approaches for the clinical management of familial dilated cardiomyopathy.
Collapse
Affiliation(s)
- D de Gonzalo-Calvo
- Cardiovascular Research Center, CSIC-ICCC, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - M Quezada
- Hospital Universitario de la Cruz Roja, Madrid, Spain
| | - O Campuzano
- Cardiovascular Genetics Center, IDIBGI, University of Girona, Girona, Spain; Medical Science Department, School of Medicine, Girona, Spain
| | - A Perez-Serra
- Cardiovascular Genetics Center, IDIBGI, University of Girona, Girona, Spain
| | - J Broncano
- Cardiothoracic Imaging Section, Hospital Cruz Roja, Hospital San Juan de Dios. Ressalta, Health Time Group, Córdoba, Spain
| | - R Ayala
- Hospital Universitario de la Cruz Roja, Madrid, Spain
| | - M Ramos
- Hospital Universitario de la Cruz Roja, Madrid, Spain
| | - V Llorente-Cortes
- Cardiovascular Research Center, CSIC-ICCC, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - S Blasco-Turrión
- Cardiology Department, Puerto Real Universitary Hospital, Cádiz, Spain
| | - F J Morales
- Cardiology Department, Puerto Real Universitary Hospital, Cádiz, Spain
| | - P Gonzalez
- Cardiology Department, Puerto Real Universitary Hospital, Cádiz, Spain
| | - R Brugada
- Cardiovascular Genetics Center, IDIBGI, University of Girona, Girona, Spain; Medical Science Department, School of Medicine, Girona, Spain; Cardiology Department, Hospital Josep Trueta, Girona, Spain
| | - A Mangas
- Medicine Department, School of Medicine, University of Cadiz, Cádiz, Spain
| | - R Toro
- Medicine Department, School of Medicine, University of Cadiz, Cádiz, Spain.
| |
Collapse
|
5
|
van der Wall EE. Heart beats: not to be beaten. Neth Heart J 2015; 23:351-2. [PMID: 26135225 PMCID: PMC4497979 DOI: 10.1007/s12471-015-0725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- E E van der Wall
- Netherlands Society of Cardiology/Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands,
| |
Collapse
|