1
|
Ahmadi Badi S, Kariman A, Bereimipour A, Shojaie S, Aghsadeghi M, Khatami S, Masotti A. Association Between Altered Microbiota Composition and Immune System-Related Genes in COVID-19 Infection. Mol Biotechnol 2025; 67:957-973. [PMID: 38456962 DOI: 10.1007/s12033-024-01096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024]
Abstract
Microbiota and immunity affect the host's susceptibility to SARS-CoV-2 infection and the severity of COVID-19. This study aimed to identify significant alterations in the microbiota composition, immune signaling pathways, their potential association, and candidate microRNA in COVID-19 patients using an in silico study model. Enrichment online databases and Python programming were utilized to analyze GSE164805, GSE180594, and GSE182279, as well as NGS data of microbiota composition (PRJNA650244 and PRJNA660302) associated with COVID-19, employing amplicon-based/marker gene sequencing methods. C1, TNF, C2, IL1, and CFH genes were found to have a significant impact on immune signaling pathways. Additionally, we observed a notable decrease in Bacteroides spp. and Faecalibacterium sp., while Escherichia coli, Streptococcus spp., and Akkermansia muciniphila showed increased abundance in COVID-19. Notably, A. muciniphila demonstrated an association with immunity through C1 and TNF, while Faecalibacterium sp. was linked to C2 and IL1. The correlation between E. coli and CFH, as well as IL1 and Streptococcus spp. with C2, was identified. hsa-let-7b-5p was identified as a potential candidate that may be involved in the interaction between the microbiota composition, immune response, and COVID-19. In conclusion, integrative in silico analysis shows that these microbiota members are potentially crucial in the immune responses against COVID-19.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran.
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Arian Kariman
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Ahmad Bereimipour
- Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Shima Shojaie
- Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | | | - Shohreh Khatami
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| |
Collapse
|
2
|
Hu T, Li Y, Yan S, Sun L, Lian R, Yu J, Chen J, Liu X, Zhang G. Application of myxovirus resistance protein A in the etiological diagnosis of infections in adults. World J Emerg Med 2025; 16:35-42. [PMID: 39906110 PMCID: PMC11788119 DOI: 10.5847/wjem.j.1920-8642.2025.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Inappropriate antibiotic treatment for patients with viral infections has led to a surge in antimicrobial resistance, increasing mortality and healthcare costs. Viral and bacterial infections are often difficult to distinguish. Myxovirus resistance protein A (MxA), an essential antiviral factor induced by interferon after viral infection, holds promise for distinguishing between viral and bacterial infections. This study aimed to determine the ability of MxA to distinguish viral from bacterial infections. METHODS We quantified MxA in 121 infected patients via dry immunofluorescence chromatography. The Kruskal-Wallis test and receiver operating characteristic (ROC) curve analysis were used to determine the diagnostic value of MxA, either alone or in combination with C-reactive protein (CRP) or procalcitonin (PCT), in patients with viral, bacterial, or co-infections. RESULTS The value of MxA (ng/mL) was significantly higher in patients with viral infections than in those with bacterial and co-infections (82.3 [24.5-182.9] vs. 16.4 [10.8-26.5], P<0.0001) (82.3 [24.5-182.9] vs. 28.5 [10.2-106.8], P=0.0237). The area under the curve (AUC) of the ROC curve for distinguishing between viral and bacterial infections was 0.799 (95% confidence interval [95% CI] 0.696-0.903), with a sensitivity of 68.9% (95% CI 54.3%-80.5%) and specificity of 90.0% (95% CI 74.4%-96.5%) at the threshold of 50.3 ng/mL. Combining the MxA level with the CRP or PCT level improved its ability. MxA expression was low in cytomegalovirus (15.8 [9.6-47.6] ng/mL) and Epstein-Barr virus (12.9 [8.5-21.0] ng/mL) infections. CONCLUSION Our study showed the diagnostic efficacy of MxA in distinguishing between viral and bacterial infections, with further enhancement when it was combined with CRP or PCT. Moreover, Epstein-Barr virus and human cytomegalovirus infections did not elicit elevated MxA expression.
Collapse
Affiliation(s)
- Tianpeng Hu
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Li
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shengtao Yan
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lichao Sun
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Rui Lian
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jieqiong Yu
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie Chen
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoyu Liu
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
3
|
Krasaewes K, Chaiwarith R, Chattipakorn N, Chattipakorn SC. Profiles of gut microbiota associated with clinical outcomes in patients with different stages of SARS-CoV-2 infection. Life Sci 2023; 332:122136. [PMID: 37783267 DOI: 10.1016/j.lfs.2023.122136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The correlation between SARS-CoV-2 infection and gut microbiota has been a subject of growing interest in recent research endeavors. It is postulated that SARS-CoV-2 might lead to gut dysbiosis by affecting the gut-lung axis and reducing the production of antimicrobial peptides in the gastrointestinal tract. Our comprehensive review of both in vivo and clinical studies has revealed a consistent decline in alpha diversity and increased dissimilarity in beta diversity of gut microbiota in comparison to healthy populations, observed during both the acute and post-infection phases of COVID-19. Furthermore, there is a notable reduction in the number of beneficial butyrate-producing bacteria, alongside an upsurge in opportunistic bacteria. Concomitantly, the functional and metabolic characteristics of gut microbiota are significantly altered. Consequently, COVID-19 patients exhibit a heightened inflammatory state, which has been linked to the severity of the disease in the acute phase and the occurrence of post-acute COVID-19 syndrome (PACS) in the post-infection phase. Notably, certain specific gut microbiota species have emerged as potential candidates for aiding in the diagnosis, prediction of disease severity, or treatment of severe cases of COVID-19. This review also underscores the significance of gut microbiota in the context of post-acute COVID-19 syndrome (PACS) and offers valuable insights into possible biomarkers for diagnosis and therapeutic targets for PACS in the future.
Collapse
Affiliation(s)
- Kawisara Krasaewes
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Romanee Chaiwarith
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Taufer CR, Rampelotto PH. The Role of Bifidobacterium in COVID-19: A Systematic Review. Life (Basel) 2023; 13:1847. [PMID: 37763251 PMCID: PMC10532519 DOI: 10.3390/life13091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, mainly causes respiratory and intestinal symptoms and changes in the microbiota of patients. We performed a systematic search in major databases using "Bifidobacterium" and "COVID-19" or "SARS-CoV-2" as key terms to assess the relationship of the genus to COVID-19. After the selection steps, 25 articles were analyzed. Of these, eighteen were observational, and seven were interventional articles that evaluated the use of Bifidobacterium alone or in mix as probiotics for additional treatment of patients with COVID-19. All stages and severities were contemplated, including post-COVID-19 patients. Overall, Bifidobacterium was associated with both protective effects and reduced abundance in relation to the disease. The genus has been found to be abundant in some cases and linked to disease severity. The studies evaluating the use of Bifidobacterium as probiotics have demonstrated the potential of this genus in reducing symptoms, improving pulmonary function, reducing inflammatory markers, alleviating gastrointestinal symptoms, and even contributing to better control of mortality. In summary, Bifidobacterium may offer protection against COVID-19 through its ability to modulate the immune response, reduce inflammation, compete with pathogenic microbes, and maintain gut barrier function. The findings provide valuable insights into the relationship between the disease and the genus Bifidobacterium, highlighting the potential of microbiota modulation in the treatment of COVID-19.
Collapse
Affiliation(s)
- Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|