1
|
Viscous Cervical Environment-on-a-Chip for Selecting High-Quality Sperm from Human Semen. Biomedicines 2021; 9:biomedicines9101439. [PMID: 34680555 PMCID: PMC8533482 DOI: 10.3390/biomedicines9101439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
When ejaculated sperm travels through the vagina to the uterus, mucus secreted by the cervical canal generally filters out sperm having low motility and poor morphology. To investigate this selection principle in vivo, we developed a microfluidic sperm-sorting chip with a viscous medium (polyvinylpyrrolidone: PVP) to imitate the biophysical environment mimic system of the human cervical canal. The material property of the PVP solution was tuned to the range of viscosities of cervical mucus using micro-viscometry. The selection of high-quality human sperm was experimentally evaluated in vitro and theoretically analyzed by the convection-diffusion mechanism. The convection flow is shown to be dominant at low viscosity of the medium used in the sperm-sorting chip when seeded with raw semen; hence, the raw semen containing sperm and debris convectively flow together with suppressed relative dispersions. Also, it was observed that the sperm selected via the chip not only had high motilities but also normal morphologies and high DNA integrity. Therefore, the biomimetic sperm-sorting chip with PVP medium is expected to improve male fertility by enabling the selection of high-quality sperm as well as uncovering pathways and regulatory mechanisms involved in sperm transport through the female reproductive tract for egg fertilization.
Collapse
|
2
|
Rubessa M, Feugang JM, Kandel ME, Schreiber S, Hessee J, Salerno F, Meyers S, Chu I, Popescu G, Wheeler MB. High-throughput sperm assay using label-free microscopy: morphometric comparison between different sperm structures of boar and stallion spermatozoa. Anim Reprod Sci 2020; 219:106509. [PMID: 32828395 DOI: 10.1016/j.anireprosci.2020.106509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
The capacity for microscopic evaluation of sperm is useful for assisted reproductive technologies (ART), because this can allow for specific selection of sperm cells for in vitro fertilization (IVF). The objective of this study was to analyze the same sperm samples using two high-resolution methods: spatial light interference microscopy (SLIM) and atomic force microscopy (AFM) to determine if with one method there was more timely and different information obtained than the other. To address this objective, there was evaluation of sperm populations from boars and stallions. To the best of our knowledge, this is the first reported comparison when using AFM and high-sensitivity interferometric microscopy (such as SLIM) to evaluate spermatozoa. Results indicate that with the use of SLIM microscopy there is similar nanoscale sensitivity as with use of AFM while there is approximately 1,000 times greater throughput with use of SLIM. With SLIM, there is also allowace for the measurement of the dry mass (non-aqueous content) of spermatozoa, which may be a new label-free marker for sperm viability. In the second part of this study, there was analysis of two sperm populations. There were interesting correlations between the different compartments of the sperm and the dry mass in both boars and stallions. Furthermore, there was a correlation between the dry mass of the sperm head and the length and width of the acrosome in both boars and stallions. This correlation is positive in boars while it is negative in stallions.
Collapse
Affiliation(s)
- Marcello Rubessa
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Univ. of Illinois at Urbana-Champaign, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mikhail E Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, USA
| | - Sierra Schreiber
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Jade Hessee
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Francesca Salerno
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Sascha Meyers
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Iwei Chu
- Institute for Imaging & Analytical Technologies, Mississippi State University, Mississippi State, MS 39762, USA
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA; Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, USA
| | - Matthew B Wheeler
- Department of Animal Science, University of Illinois, Urbana-Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Univ. of Illinois at Urbana-Champaign, USA; Department of Bioengineering, University of Illinois, Urbana, Illinois 61801, USA.
| |
Collapse
|