1
|
Mu J, Zhou Z, Sang Q, Wang L. The physiological and pathological mechanisms of early embryonic development. FUNDAMENTAL RESEARCH 2022; 2:859-872. [PMID: 38933386 PMCID: PMC11197659 DOI: 10.1016/j.fmre.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022] Open
Abstract
Early embryonic development is a complex process. The zygote undergoes several rounds of division to form a blastocyst, and during this process, the zygote undergoes the maternal-to-zygotic transition to gain control of embryonic development and makes two cell fate decisions to differentiate into an embryonic and two extra-embryonic lineages. With the use of new molecular biotechnologies and animal models, we can now further study the molecular mechanisms of early embryonic development and the pathological causes of early embryonic arrest. Here, we first summarize the known molecular regulatory mechanisms of early embryonic development in mice. Then we discuss the pathological factors leading to the early embryonic arrest. We hope that this review will give researchers a relatively complete view of the physiology and pathology of early embryonic development.
Collapse
Affiliation(s)
- Jian Mu
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Qing Sang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Goszczynski DE, Tinetti PS, Choi YH, Hinrichs K, Ross PJ. Genome activation in equine in vitro-produced embryos. Biol Reprod 2021; 106:66-82. [PMID: 34515744 DOI: 10.1093/biolre/ioab173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Embryonic genome activation is a critical event in embryo development, in which the transcriptional program of the embryo is initiated. The timing and regulation of this process are species-specific. In vitro embryo production is becoming an important clinical and research tool in the horse; however, very little is known about genome activation in this species. The objective of this work was to identify the timing of genome activation, and the transcriptional networks involved, in in vitro-produced horse embryos. RNA-Seq was performed on oocytes and embryos at eight stages of development (MII, zygote, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst; n = 6 per stage, 2 from each of 3 mares). Transcription of seven genes was initiated at the 2-cell stage. The first substantial increase in gene expression occurred at the 4-cell stage (minor activation), followed by massive gene upregulation and downregulation at the 8-cell stage (major activation). An increase in intronic nucleotides, indicative of transcription initiation, was also observed at the 4-cell stage. Co-expression network analyses identified groups of genes that appeared to be regulated by common mechanisms. Investigation of hub genes and binding motifs enriched in the promoters of co-expressed genes implicated several transcription factors. This work represents, to the best of our knowledge, the first genomic evaluation of embryonic genome activation in horse embryos.
Collapse
Affiliation(s)
- D E Goszczynski
- Department of Animal Science, University of California, Davis, CA, USA
| | - P S Tinetti
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Y H Choi
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - K Hinrichs
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - P J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Anti-Oxidative Effects of Human Adipose Stem Cell Conditioned Medium with Different Basal Medium during Mouse Embryo In Vitro Culture. Animals (Basel) 2020; 10:ani10081414. [PMID: 32823702 PMCID: PMC7459530 DOI: 10.3390/ani10081414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Assisted reproductive techniques, which are used to resolve various infertility problems, have advanced following the emphasis on their use. Embryos produced in vitro rather than in vivo are exposed to greater stress, with the quality of the embryos being affected by the in vitro culture conditions. To reduce oxidative stress and consequent apoptosis of embryos for successful implantation and pregnancy maintenance, the present study evaluated the anti-oxidative effect of human adipose stem cell conditioned medium (ASC-CM) with different basal medium as supplement in in vitro culture (IVC) medium for mouse preimplantation embryo. Treatment of 5% human ASC-CM based on Dulbecco′s modified Eagle′s medium (DMEM-CM) indicated an enhanced development of mouse in vitro fertilized embryo, decreased expression level of indicators for oxidative stress, and apoptosis in blastocysts. To our knowledge, this is the first study to demonstrate that DMEM-CM can be an optimal supplement during IVC to promote in vitro embryo development and the success rate of assisted reproduction with its anti-oxidative and anti-apoptotic effects. Abstract The quality of embryos produced by assisted reproductive techniques should be advanced by the improvement of in vitro culture conditions for successful implantation and pregnancy maintenance. We investigated the anti-oxidative effect of human adipose stem cell (ASC) conditioned medium with its optimal basal medium, Dulbecco′s modified Eagle′s medium (DMEM-CM), or keratinocyte serum-free medium (KSFM-CM) as supplements during in vitro culture (IVC) of in vitro fertilized mouse embryo. At first, preimplantation embryo development was evaluated in KSFM-CM and DMEM-CM supplemented cultures at various concentrations. The blastocyst (BL) and hatched BL formation rates were significantly increased in 5% DMEM-CM, while no difference was observed from KSFM-CM. Next, comparing the efficacy of KSFM-CM and DMEM-CM at the same concentration, DMEM-CM enhanced the developmental rate of 16 cells, morula, BL, and hatched BL. The expression level of reactive oxygen species decreased and that of glutathione increased in BL cultured with DMEM-CM, which confirms its anti-oxidative effect. Furthermore, apoptosis in BL cultured with DMEM-CM was reduced compared with that in KSFM-CM. This study demonstrated that the comparative effect of human ASC-CM made of two different basal media during mouse embryo IVC and anti-oxidative effect of 5% DMEM-CM was optimal to improve preimplantation embryo development.
Collapse
|
4
|
Coticchio G, Lagalla C, Sturmey R, Pennetta F, Borini A. The enigmatic morula: mechanisms of development, cell fate determination, self-correction and implications for ART. Hum Reprod Update 2020; 25:422-438. [PMID: 30855681 DOI: 10.1093/humupd/dmz008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Assisted reproduction technology offers the opportunity to observe the very early stages of human development. However, due to practical constraints, for decades morphological examination of embryo development has been undertaken at a few isolated time points at the stages of fertilisation (Day 1), cleavage (Day 2-3) and blastocyst (Day 5-6). Rather surprisingly, the morula stage (Day 3-4) has been so far neglected, despite its involvement in crucial cellular processes and developmental decisions. OBJECTIVE AND RATIONALE The objective of this review is to collate novel and unsuspected insights into developmental processes occurring during formation of the morula, highlighting the key importance of this stage for a better understanding of preimplantation development and an improvement of ART. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed English-language original articles and reviews concerning the morula stage in mammals. Searches were performed by adopting 'embryo', 'morula', 'compaction', 'cell fate' and 'IVF/assisted reproduction' as main terms, in association with other keywords expressing concepts relevant to the subject (e.g. cell polarity). The most relevant publications, i.e. those concerning major phenomena occurring during formation of the morula in established experimental models and the human species, were assessed and discussed critically. OUTCOMES Novel live cell imaging technologies and cell biology studies have extended our understanding of morula formation as a key stage for the development of the blastocyst and determination of the inner cell mass (ICM) and the trophectoderm (TE). Cellular processes, such as dynamic formation of filopodia and cytoskeleton-mediated zippering cell-to-cell interactions, intervene to allow cell compaction (a geometrical requisite essential for development) and formation of the blastocoel, respectively. At the same time, differential orientation of cleavage planes, cell polarity and cortical tensile forces interact and cooperate to position blastomeres either internally or externally, thereby influencing their cellular fate. Recent time lapse microscopy (TLM) observations also suggest that in the human the process of compaction may represent an important checkpoint for embryo viability, through which chromosomally abnormal blastomeres are sensed and eliminated by the embryo. WIDER IMPLICATIONS In clinical embryology, the morula stage has been always perceived as a 'black box' in the continuum of preimplantation development. This has dictated its virtual exclusion from mainstream ART procedures. Recent findings described in this review indicate that the morula, and the associated process of compaction, as a crucial stage not only for the formation of the blastocyst, but also for the health of the conceptus. This understanding may open new avenues for innovative approaches to embryo manipulation, assessment and treatment.
Collapse
Affiliation(s)
| | - Cristina Lagalla
- 9.Baby, Family and Fertility Center, Via Dante 15, Bologna, Italy
| | - Roger Sturmey
- Centre for Cardiovascular Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | - Andrea Borini
- 9.Baby, Family and Fertility Center, Via Dante 15, Bologna, Italy
| |
Collapse
|
5
|
Alternative patterns of partial embryo compaction: prevalence, morphokinetic history and possible implications. Reprod Biomed Online 2020; 40:347-354. [DOI: 10.1016/j.rbmo.2019.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
|
6
|
Fan J, Campioli E, Sottas C, Zirkin B, Papadopoulos V. Amhr2-Cre-Mediated Global Tspo Knockout. J Endocr Soc 2020; 4:bvaa001. [PMID: 32099945 PMCID: PMC7031085 DOI: 10.1210/jendso/bvaa001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
Although the role of translocator protein (TSPO) in cholesterol transport in steroid-synthesizing cells has been studied extensively, recent studies of TSPO genetic depletion have questioned its role. Amhr2-Cre mice have been used to generate Leydig cell-specific Tspo conditional knockout (cKO) mice. Using the same Cre line, we were unable to generate Tspo cKO mice possibly because of genetic linkage between Tspo and Amhr2 and coexpression of Amhr2-Cre and Tspo in early embryonic development. We found that Amhr2-Cre is expressed during preimplantation stages, resulting in global heterozygous mice (gHE; Amhr2-Cre+/-,Tspo -/+). Two gHE mice were crossed, generating Amhr2-Cre-mediated Tspo global knockout (gKO; Tspo -/-) mice. We found that 33.3% of blastocysts at E3.5 to E4.5 showed normal morphology, whereas 66.7% showed delayed development, which correlates with the expected Mendelian proportions of Tspo +/+ (25%), Tspo -/- (25%), and Tspo +/- (50%) genotypes from crossing 2 Tspo -/+ mice. Adult Tspo gKO mice exhibited disturbances in neutral lipid homeostasis and reduced intratesticular and circulating testosterone levels, but no change in circulating basal corticosterone levels. RNA-sequencing data from mouse adrenal glands and lungs revealed transcriptome changes in response to the loss of TSPO, including changes in several cholesterol-binding and transfer proteins. This study demonstrates that Amhr2-Cre can be used to produce Tspo gKO mice instead of cKO, and can serve as a new global "Cre deleter." Moreover, our results show that Tspo deletion causes delayed preimplantation embryonic development, alters neutral lipid storage and steroidogenesis, and leads to transcriptome changes that may reflect compensatory mechanisms in response to the loss of function of TSPO.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Enrico Campioli
- The Research Institute of the McGill University Health Centre
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, US
| | - Barry Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, US
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, US
| |
Collapse
|
7
|
Pang CY, Bai MZ, Zhang C, Chen J, Lu XR, Deng TX, Ma XY, Duan AQ, Liang SS, Huang YQ, Xiu Z, Liang XW. Global transcriptome analysis of different stages of preimplantation embryo development in river buffalo. PeerJ 2019; 7:e8185. [PMID: 31824777 PMCID: PMC6894430 DOI: 10.7717/peerj.8185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/10/2019] [Indexed: 12/03/2022] Open
Abstract
Background Water buffalo (Bubalus bubalis) are divided into river buffalo and swamp buffalo subspecies and are essential livestock for agriculture and the local economy. Studies on buffalo reproduction have primarily focused on optimal fertility and embryonic mortality. There is currently limited knowledge on buffalo embryonic development, especially during the preimplantation period. Assembly of the river buffalo genome offers a reference for omics studies and facilitates transcriptomic analysis of preimplantation embryo development (PED). Methods We revealed transcriptomic profile of four stages (2-cell, 8-cell, Morula and Blastocyst) of PED via RNA-seq (Illumina HiSeq4000). Each stage comprised three biological replicates. The data were analyzed according to the basic RNA-seq analysis process. Ingenuity analysis of cell lineage control, especially transcription factor (TF) regulatory networks, was also performed. Results A total of 21,519 expressed genes and 67,298 transcripts were predicted from approximately 81.94 Gb of raw data. Analysis of transcriptome-wide expression, gene coexpression networks, and differentially expressed genes (DEGs) allowed for the characterization of gene-specific expression levels and relationships for each stage. The expression patterns of TFs, such as POU5F1, TEAD4, CDX4 and GATAs, were elucidated across diverse time series; most TF expression levels were increased during the blastocyst stage, during which time cell differentiation is initiated. All of these TFs were involved in the composition of the regulatory networks that precisely specify cell fate. These findings offer a deeper understanding of PED at the transcriptional level in the river buffalo.
Collapse
Affiliation(s)
- Chun-Ying Pang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - Ming-Zhou Bai
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, PR China
| | - Chi Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, PR China
| | - Junhui Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, PR China
| | - Xing-Rong Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - Ting-Xian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - Xiao-Ya Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - An-Qin Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - Sha-Sha Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| | - Yun-Qi Huang
- Shandong Agricultural University, Taian, PR China
| | - Zhihui Xiu
- BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong, PR China
| | - Xian-Wei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs (Guangxi), Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, P. R. China
| |
Collapse
|
8
|
Characterizing Inner Pressure and Stiffness of Trophoblast and Inner Cell Mass of Blastocysts. Biophys J 2018; 115:2443-2450. [PMID: 30509858 DOI: 10.1016/j.bpj.2018.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
It has long been recognized that mechanical forces underlie mammalian embryonic shape changes. Before gastrulation, the blastocyst embryo undergoes significant shape changes, namely, the blastocyst cavity emerges and expands, and the inner cell mass (ICM) forms and changes in shape. The embryo's inner pressure has been hypothesized to be the driving mechanical input that causes the expansion of the blastocyst cavity and the shape changes of the ICM. However, how the inner pressure and the mechanics of the trophoblast and the ICM change during development is unknown because of the lack of a suitable tool for quantitative characterization. This work presents a laser-assisted magnetic tweezer technique for measuring the inner pressure and Young's modulus of the trophoblast and ICM of the blastocyst-stage mouse embryo. The results quantitatively showed that the inner pressure and Young's modulus of the trophoblast and ICM all increase during progression of mouse blastocysts, providing useful data for understanding how mechanical factors are physiologically integrated with other cues to direct embryo development.
Collapse
|