1
|
Zhang H, Sun S, Liu J, Guo Q, Meng L, Chen J, Xiang X, Zhou Y, Zhang N, Liu H, Liu Y, Yan G, Ji Q, He L, Cai S, Cai C, Huang X, Xu S, Xiao Y, Zhang Y, Wang K, Liu Y, Chen H, Yue Z, He S, Wang J, Yang H, Liu X, Seim I, Gu Y, Li Q, Zhang G, Lee SMY, Kristiansen K, Xu X, Liu S, Fan G. The amphipod genome reveals population dynamics and adaptations to hadal environment. Cell 2025; 188:1378-1392.e18. [PMID: 40054448 DOI: 10.1016/j.cell.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 05/13/2025]
Abstract
The amphipod Hirondellea gigas is a dominant species inhabiting the deepest part of the ocean (∼6,800-11,000 m), but little is known about its genetic adaptation and population dynamics. Here, we present a chromosome-level genome of H. gigas, characterized by a large genome size of 13.92 Gb. Whole-genome sequencing of 510 individuals from the Mariana Trench indicates no population differentiation across depths, suggesting its capacity to tolerate hydrostatic pressure across wide ranges. H. gigas in the West Philippine Basin is genetically divergent from the Mariana and Yap Trenches, suggesting genetic isolation attributed to the geographic separation of hadal features. A drastic reduction in effective population size potentially reflects glacial-interglacial changes. By integrating multi-omics analysis, we propose host-symbiotic microbial interactions may be crucial in the adaptation of H. gigas to the extremely high-pressure and food-limited environment. Our findings provide clues for adaptation to the hadal zone and population genetics.
Collapse
Affiliation(s)
- Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya 57200, China.
| | - Shuai Sun
- BGI Research, Qingdao 266555, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen 518083, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Qunfei Guo
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Liang Meng
- BGI Research, Qingdao 266555, China; BGI Research, Sanya 572025, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya 57200, China
| | - Jianwei Chen
- BGI Research, Qingdao 266555, China; Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China; Laboratory of Integrative Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xueyan Xiang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China; Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen 518083, China
| | - Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Nannan Zhang
- BGI Research, Qingdao 266555, China; BGI Research, Sanya 572025, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | | | - Guoyong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | | | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | | | - Xin Huang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shiyu Xu
- BGI Research, Qingdao 266555, China
| | - Yunlu Xiao
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | | | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | | | - Haixin Chen
- BGI Research, Sanya 572025, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya 57200, China
| | - Zhen Yue
- BGI Research, Sanya 572025, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya 57200, China
| | - Shunping He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | | | - Huanming Yang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Xin Liu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China
| | - Inge Seim
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Ying Gu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Qiye Li
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Guojie Zhang
- Center of Evolutionary & Organismal Biology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrition and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Ocean Resources, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karsten Kristiansen
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China; Laboratory of Integrative Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xun Xu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China; BGI Research, Hangzhou 310030, China.
| | - Shanshan Liu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; Institution of Deep-sea Life Sciences, IDSSE-BGI, Hainan Deep-sea Technology Laboratory, Sanya 57200, China; BGI, Shenzhen 518083, China; Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen 518083, China.
| | - Guangyi Fan
- BGI Research, Qingdao 266555, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao 266555, China; BGI Research, Sanya 572025, China; Department of Food Science and Nutrition and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Ocean Resources, The Hong Kong Polytechnic University, Hong Kong, China; Shenzhen Key Laboratory of Marine Biology Genomics, BGI Research, Shenzhen 518083, China.
| |
Collapse
|
2
|
Oliva ME, Sepúlveda FA, Escribano R, Ñacari LA. Taxonomic and molecular characterization of Pseudosteringophorusprofundis sp. nov. (Digenea, Fellodistomidae), a parasite of Macrourusholotrachys Günther, 1878 (Gadiformes, Macrouridae) from the deep sea southeastern Pacific Ocean. Zookeys 2024; 1221:435-447. [PMID: 39780992 PMCID: PMC11707522 DOI: 10.3897/zookeys.1221.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Pseudosteringophorusprofundis sp. nov. a new species of deep-sea digenean, parasitizing the gallbladder of the "Bigeye grenadier" (Macrourusholotrachys Günther, 1878) in the deep waters of the southeastern Pacific Ocean is described on the basis of morphological and molecular (28S rRNA) data. The new species is distinguishable from Pseudosteringophorushoplognathi Yamaguti, 1940, the only other member of the genus, by its subterminal oral sucker, the position of the ovary and testes, the larger anterior seminal vesicle compared to the posterior one, and its larger eggs. In addition, the new species is a parasite of a deep-sea fish, whereas P.hoplognathi is a parasite of shallow-water fish. A phylogenetic tree, based on 28S rDNA sequences, indicates that this species is included in a clade of deep-sea fellodistomid species (Steringophorus spp.). We provide the first molecular data on the genus Pseudosteringophorus Yamaguti, 1940 and expand the molecular database for the family Fellodistomidae. Further studies, including sequences from other fellodistomid taxa, are needed to more precisely infer relationships within this family.
Collapse
Affiliation(s)
- Marcelo E. Oliva
- Instituto Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Angamos 601, Antofagasta, ChileUniversidad de AntofagastaAntofagastaChile
- Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, ChileUniversidad de ConcepciónConcepciónChile
| | - Fabiola A. Sepúlveda
- Instituto Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Angamos 601, Antofagasta, ChileUniversidad de AntofagastaAntofagastaChile
| | - Rubén Escribano
- Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, ChileUniversidad de ConcepciónConcepciónChile
| | - Luis A. Ñacari
- Instituto Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Angamos 601, Antofagasta, ChileUniversidad de AntofagastaAntofagastaChile
- Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, ChileUniversidad de ConcepciónConcepciónChile
| |
Collapse
|
3
|
Kaiser S, Stransky B, Jennings RM, Kihara TC, Brix S. Combining morphological and mitochondrial DNA data to describe a new species of Austroniscus Vanhöffen, 1914 (Isopoda, Janiroidea, Nannoniscidae) linking abyssal and hadal depths of the Puerto Rico Trench. Zootaxa 2023; 5293:401-434. [PMID: 37518475 DOI: 10.11646/zootaxa.5293.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 08/01/2023]
Abstract
Hadal trenches are perceived as a unique deep-sea ecosystem with fundamentally different communities compared to the nearby abyss. So far, however, scarce information exists about how populations are genetically linked within a trench and about mechanisms for species divergence. The present study presents the morphological and molecular-genetic characterization and description of a new nannoniscid species within the genus Austroniscus Vanhöffen, 1914 obtained from abyssal and hadal depths of the Puerto Rico Trench, NW Atlantic. Samples were collected as part of the Vema-TRANSIT expedition onboard RV Sonne in January 2015. Because of the large depth differences between sampling locations (4,552-8,338 m), we expected to find different species within the genus inhabiting abyssal and hadal sites. Initial morphological examination using traditional light microscopy and Confocal Laser Scanning Microscopy was paired with subsequent molecular analysis based on mtDNA (COI and 16S). Contrary to our assumptions, combined morphological and molecular species delimitation analyses (sGMYC, mPTP, ABGD) revealed the presence of only one species spanning the abyssal and hadal seafloor of the Puerto Rico Trench. In addition, comparison with type material could show that this species belongs to a new species, Austroniscus brandtae n. sp., which is described herein. Incongruence between some species delimitation methods suggesting the presence of multiple species is interpreted as strong genetic population structuring within the trench, which is also supported by the analysis of the haplotype networks. The geographic and bathymetric distribution of Austroniscus species is discussed. The species described herein represents the first in the genus Austroniscus from the Atlantic Ocean and the deepest record of the genus to date, and hence significantly expanding previously known limits of its geographic and bathymetric range.
Collapse
Affiliation(s)
- Stefanie Kaiser
- University of Łódź; Faculty of Biology and Environmental Protection; Department of Invertebrate Zoology and Hydrobiology; Banacha St. 12/16; Łódź; 90-237; Poland; Senckenberg Research Institute; Department of Marine Zoology; Section Crustacea; Senckenberganlage 25; 60325 Frankfurt; Germany.
| | - Bente Stransky
- Museum of Nature; Leibniz Institute for the Analysis of Biodiversity Change (LIB); Centre for Taxonomy and Morphology; Martin- Luther-King-Platz 3; 20146 Hamburg; Germany.
| | - Robert M Jennings
- Temple University; Biology Department; 1900 North 12th Street; Philadelphia; PA 19122; USA.
| | - Terue Cristina Kihara
- Integrated Environmental Solutions UG-INES; c/o DZMB; Südstrand 44; 26382 Wilhelmshaven; Germany.
| | - Saskia Brix
- German Centre for Marine Biodiversity Research (DZMB); Senckenberg am Meer; Martin-Luther-King-Platz 3; 20146 Hamburg; Germany.
| |
Collapse
|
4
|
Piertney SB, Wenzel M, Jamieson AJ. Large effective population size masks population genetic structure in Hirondellea amphipods within the deepest marine ecosystem, the Mariana Trench. Mol Ecol 2023; 32:2206-2218. [PMID: 36808786 DOI: 10.1111/mec.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
The examination of genetic structure in the deep-ocean hadal zone has focused on divergence between tectonic trenches to understand how environment and geography may drive species divergence and promote endemism. There has been little attempt to examine localized genetic structure within trenches, partly because of logistical challenges associated with sampling at an appropriate scale, and the large effective population sizes of species that can be sampled adequately may mask underlying genetic structure. Here we examine genetic structure in the superabundant amphipod Hirondellea gigas in the Mariana Trench at depths of 8126-10,545 m. RAD sequencing was used to identify 3182 loci containing 43,408 single nucleotide polymorphisms (SNPs) across individuals after stringent pruning of loci to prevent paralogous multicopy genomic regions being erroneously merged. Principal components analysis of SNP genotypes resolved no genetic structure between sampling locations, consistent with a signature of panmixia. However, discriminant analysis of principal components identified divergence between all sites driven by 301 outlier SNPs in 169 loci and significantly associated with latitude and depth. Functional annotation of loci identified differences between singleton loci used in analysis and paralogous loci pruned from the data set and also between outlier and nonoutlier loci, all consistent with hypotheses explaining the role of transposable elements driving genome dynamics. This study challenges the traditional perspective that highly abundant amphipods within a trench form a single panmictic population. We discuss the findings in relation to eco-evolutionary and ontogenetic processes operating in the deep sea, and highlight key challenges associated with population genetic analysis in nonmodel systems with inherent large effective population sizes and genomes.
Collapse
Affiliation(s)
| | - Marius Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Alan J Jamieson
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Weston JNJ, Jensen EL, Hasoon MSR, Kitson JJN, Stewart HA, Jamieson AJ. Barriers to gene flow in the deepest ocean ecosystems: Evidence from global population genomics of a cosmopolitan amphipod. SCIENCE ADVANCES 2022; 8:eabo6672. [PMID: 36288308 PMCID: PMC9604539 DOI: 10.1126/sciadv.abo6672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The deepest marine ecosystem, the hadal zone, hosts endemic biodiversity resulting from geographic isolation and environmental selection pressures. However, the pan-ocean distribution of some fauna challenges the concept that the hadal zone is a series of isolated island-like habitats. Whether this remains true at the population genomic level is untested. We investigated phylogeographic patterns of the amphipod, Bathycallisoma schellenbergi, from 12 hadal features across the Pacific, Atlantic, Indian, and Southern oceans and analyzed genome-wide single-nucleotide polymorphism markers and two mitochondrial regions. Despite a cosmopolitan distribution, populations were highly restricted to individual features with only limited gene flow between topographically connected features. This lack of connectivity suggests that populations are on separate evolutionary trajectories, with evidence of potential cryptic speciation at the Atacama Trench. Together, this global study demonstrates that the shallower ocean floor separating hadal features poses strong barriers to dispersal, driving genetic isolation and creating pockets of diversity to conserve.
Collapse
Affiliation(s)
- Johanna N J Weston
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Megan S R Hasoon
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - James J N Kitson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Heather A Stewart
- British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK
- School of Energy, Geoscience, Infrastructure and Society, Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, UK, EH14 4AS, UK
| | - Alan J Jamieson
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia (M090), 35 Stirling Highway, Perth, WA 6009
| |
Collapse
|
6
|
Li W, Wang F, Jiang S, Pan B, Liu Q, Xu Q. Morphological and molecular evolution of hadal amphipod’s eggs provides insights into embryogenesis under high hydrostatic pressure. Front Cell Dev Biol 2022; 10:987409. [PMID: 36172273 PMCID: PMC9511220 DOI: 10.3389/fcell.2022.987409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Hadal zones are unique habitats characterized by high hydrostatic pressure (HHP) and scarce food supplies. The ability of eggs of species dwelling in hadal zones to develop into normal embryo under high hydrostatic pressure is an important evolutionary and developmental trait. However, the mechanisms underlying the development of eggs of hadal-dwelling species remain unknown due to the difficulty of sampling ovigerous females. Here, morphological and transcriptome analyses of eggs of the “supergiant” amphipod Alicella gigantea collected from the New Britain Trench were conducted. The morphology of A. gigantea eggs, including size, was assessed and the ultrastructure of the eggshell was investigated by scanning electron microscopy. Transcriptome sequencing and molecular adaptive evolution analysis of A. gigantea eggs showed that, as compared with shallow-water Gammarus species, genes exhibiting accelerated evolution and the positively selected genes were mostly related to pathways associated with “mitosis” and “chitin-based embryonic cuticle biosynthetic process”, suggesting that “normal mitosis maintenance” and “cuticle development and protection” are the two main adaptation strategies for survival of eggs in hadal environments. In addition, the concentration of trimethylamine oxide (TMAO), an important osmotic regulator, was significantly higher in the eggs of hadal amphipods as compared to those of shallow-water species, which might promote the eggs’ adaptation abilities. Morphological identification, evolutionary analysis, and the trimethylamine oxide concentration of A. gigantea eggs will facilitate a comprehensive overview of the piezophilic adaptation of embryos in hadal environments and provide a strategy to analyze embryogenesis under high hydrostatic pressure.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Faxiang Wang
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qi Liu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, China
| |
Collapse
|