• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698096)   Today's Articles (80)
For: Ahmed S, Shakev N, Topalov A, Shiev K, Kaynak O. Sliding mode incremental learning algorithm for interval type-2 Takagi–Sugeno–Kang fuzzy neural networks. Evolving Systems 2012;3:179-88. [DOI: 10.1007/s12530-012-9053-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Number Cited by Other Article(s)
1
Eyoh I, Eyoh J, Umoh U, Kalawsky R. Optimization of Interval Type-2 Intuitionistic Fuzzy Logic System for Prediction Problems. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS 2021. [DOI: 10.1142/s146902682150022x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
2
Le TL. Intelligent fuzzy controller design for antilock braking systems. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2019. [DOI: 10.3233/jifs-181014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
3
Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
4
A survey on advancement of hybrid type 2 fuzzy sliding mode control. Neural Comput Appl 2017. [DOI: 10.1007/s00521-017-3144-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
5
Nature-inspired optimal tuning of input membership functions of Takagi-Sugeno-Kang fuzzy models for Anti-lock Braking Systems. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2014.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
6
Control of a direct drive robot using fuzzy spiking neural networks with variable structure systems-based learning algorithm. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.07.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
7
Online identification of evolving Takagi–Sugeno–Kang fuzzy models for crane systems. Appl Soft Comput 2014. [DOI: 10.1016/j.asoc.2014.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA