1
|
Kumari M, Waseem M, Subbarao N. Discovery of multi-target mur enzymes inhibitors with anti-mycobacterial activity through a Scaffold approach. J Biomol Struct Dyn 2022; 41:2878-2899. [PMID: 35174764 DOI: 10.1080/07391102.2022.2040593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, we generated a ligand-based scaffold model from a known bioactive datasets of mur enzymes of other species to identify multi-targeting inhibitors as antitubercular agents. Compounds in the ChEMBL database were first filtered to screen for substructure molecules ofMtb's multi-target enzymes. 5'-O-(5-Amino-5-deoxy-β-D-ribofuranosyl)uridine has been identified as scaffold to develop compounds targeting Mtb's mur enzymes. A library of Murcko scaffolds was extracted and evaluated for their in-silico antitubercular activity against Mtb's mur enzymes. The screened compounds were subjected to molecular docking, molecular dynamics simulations, MM/PBSA calculation with Mtb's mur enzymes to evaluate the mechanism of interaction to assess inhibitory activity against the target protein. The results revealed that 15 compounds have higher docking scores and good interactions with multiple mur enzymes of Mtb. From the docking analysis, compound HPT had the best score and binding affinity with the all mur enzymes. Further, protein-ligand interactions were evaluated by molecular dynamics simulations to assess their stability throughout 100 ns period. From the MD trajectory, we calculated RMSD, RMSF, Rg, PCA, DCCM, FEL, hydrogen bonding, and vector motion. Furthermore, the binding free energies of the all nine mur enzymes with compound HPT exhibited good binding affinity might show the anti-mycobacterial activity. The compound HPT revealed from this computational study could act as potent anti-mycobacterial inhibitors and further serve as lead scaffolds to develop more potent pharmaceutical molecules targeting multiple mur enzymes of Mtb based on 5'-O-(5-Amino-5-deoxy-β-D-ribofuranosyl)uridine in the future. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madhulata Kumari
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Waseem
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Shinde Y, Ahmad I, Surana S, Patel H. The Mur Enzymes Chink in the Armour of Mycobacterium tuberculosis cell wall. Eur J Med Chem 2021; 222:113568. [PMID: 34118719 DOI: 10.1016/j.ejmech.2021.113568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/02/2023]
Abstract
TUBERCULOSIS: (TB) transmitted by Mycobacterium tuberculosis (Mtb) is one of the top 10 causes of death globally. Currently, the widespread occurrence of resistance toward Mtb strains is becoming a significant concern to public health. This scenario exaggerated the need for the discovery of novel targets and their inhibitors. Targeting the "Mtb cell wall peptidoglycan synthesis" is an attractive strategy to overcome drug resistance. Mur enzymes (MurA-MurF) play essential roles in the peptidoglycan synthesis by catalyzing the ligation of key amino acid residues to the stem peptide. These enzymes are unique and confined to the eubacteria and are absent in humans, representing potential targets for anti-tubercular drug discovery. Mtb Mur ligases with the same catalytic mechanism share conserved amino acid regions and structural features that can conceivably exploit for the designing of the inhibitors, which can simultaneously target more than one isoforms (MurC-MurF) of the enzyme. In light of these findings in the current review, we have discussed the recent advances in medicinal chemistry of Mtb Mur enzymes (MurA-MurF) and their inhibitors, offering attractive multi-targeted strategies to combat the problem of drug-resistant in M. tuberculosis.
Collapse
Affiliation(s)
- Yashodeep Shinde
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, 425405, Maharashtra, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, 425405, Maharashtra, India
| | - Sanjay Surana
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, 425405, Maharashtra, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, 425405, Maharashtra, India.
| |
Collapse
|
3
|
Kumari M, Subbarao N. Identification of novel multitarget antitubercular inhibitors against mycobacterial peptidoglycan biosynthetic Mur enzymes by structure-based virtual screening. J Biomol Struct Dyn 2021; 40:8185-8196. [PMID: 33826470 DOI: 10.1080/07391102.2021.1908913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current therapeutic strategies for several diseases, including Mycobacterium tuberculosis infection, have evolved from an initial single-target treatment to a multitarget one. A multitarget antitubercular drugs targeting different mycobacterial proteins are more effective at suppressing bacterial growth. In this study, a high throughput virtual screening was performed to identify hits to the potential antitubercular multitarget: murA, murB, murC, murD, murE, murF, murG and murI from M. tuberculosis that is involved in peptidoglycan biosynthesis. In the virtual screening, we were docked 56,400 compounds of the ChEMBL antimycobacterial library and re-scored and identified the top 10 ranked compounds as antitubercular drug candidates. Further, the best common docked complex CHEMBL446262 was subjected to molecular dynamics simulation to understand the molecule's stability in the presence of an active site environment. After that, we have calculated binding free energy the top-ranked docked complexes using the MM/PBSA method. These ligands exhibited the highest binding affinity; find out novel drug-likeness might show the M. tuberculosis effect's inhibitor by interacting with multitarget Mur enzymes. New antitubercular therapies that include multitarget drugs may have higher efficacy than single-target medicines and provide a more straightforward antitubercular therapy regimen.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madhulata Kumari
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
5
|
Generation of humanized single-chain fragment variable immunotherapeutic against EGFR variant III using baculovirus expression system and in vitro validation. Int J Biol Macromol 2019; 124:17-24. [DOI: 10.1016/j.ijbiomac.2018.11.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
|
6
|
Isa MA. Homology modeling and molecular dynamic simulation of UDP-N-acetylmuramoyl-l-alanine-d-glutamate ligase (MurD) from Mycobacterium tuberculosis H37Rv using in silico approach. Comput Biol Chem 2019; 78:116-126. [DOI: 10.1016/j.compbiolchem.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023]
|
7
|
Bhardwaj T, Somvanshi P. A computational approach using mathematical modeling to assess the peptidoglycan biosynthesis of Clostridium botulinum ATCC 3502 for potential drug targets. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Agarwal S, Verma E, Kumar V, Lall N, Sau S, Iyer AK, Kashaw SK. An integrated computational approach of molecular dynamics simulations, receptor binding studies and pharmacophore mapping analysis in search of potent inhibitors against tuberculosis. J Mol Graph Model 2018; 83:17-32. [PMID: 29753941 DOI: 10.1016/j.jmgm.2018.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022]
Abstract
Tuberculosis is an infectious chronic disease caused by obligate pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Although many first and second line drugs are available for its treatment, but their irrational use has adversely lead to the emerging cases of multiple drug resistant and extensively drug-resistant tuberculosis. Therefore, there is an intense need to develop novel potent analogues for its treatment. This has prompted us to develop potent analogues against TB. The Mycobacterium tuberculosis genome provides us with number of validated targets to combat against TB. Study of Mtb genome disclosed six epoxide hydrolases (A to F) which convert harmful epoxide into diols and act as a potential drug target for rational drug design. Our current strategy is to develop such analogues which inhibits epoxide hydrolase enzyme present in Mtb genome. To achieve this, we adopted an integrated computational approach involving QSAR, pharmacophore mapping, molecular docking and molecular dynamics simulation studies. The approach envisaged vital information about the role of molecular descriptors, essential pharmacophoric features and binding energy for compounds to bind into the active site of epoxide hydrolase. Molecular docking analysis revealed that analogues exhibited significant binding to Mtb epoxide hydrolase. Further, three docked complexes 2s, 37s and 15s with high, moderate and low docking scores respectively were selected for molecular dynamics simulation studies. RMSD analysis revealed that all complexes are stable with average RMSD below 2 Å throughout the 10 ns simulations. The B-factor analysis showed that the active site residues of epoxide hydrolase are flexible enough to interact with inhibitor. Moreover, to confirm the binding of these urea derivatives, MM-GBSA binding energy analysis were performed. The calculations showed that 37s has more binding affinity (ΔGtotal = -52.24 kcal/mol) towards epoxide hydrolase compared to 2s (ΔGtotal = -51.70 kcal/mol) and 15s (ΔGtotal = -49.97 kcal/mol). The structural features inferred in our study may provide the future directions to the scientists towards the discovery of new chemical entity exhibiting anti-TB property.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Ekta Verma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Vivek Kumar
- Department of Plant and Soil Sciences, University of Pretoria, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, South Africa
| | - Samaresh Sau
- Use-inspired Biomaterials & integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Karmanos Cancer Institute, Detroit, MI, USA
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India.
| |
Collapse
|
9
|
Shingare RM, Patil YS, Sangshetti JN, Patil RB, Rajani DP, Madje BR. Synthesis, biological evaluation and docking study of some novel isoxazole clubbed 1,3,4-oxadiazoles derivatives. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2148-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Kumar V, Jhamb SS, Sobhia ME. Cell wall permeability assisted virtual screening to identify potential direct InhA inhibitors of Mycobacterium tuberculosis and their biological evaluation. J Biomol Struct Dyn 2017; 36:3274-3290. [PMID: 28974157 DOI: 10.1080/07391102.2017.1387176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The arising cases of isoniazid-resistance have motivated research interests toward new class of molecules known as direct InhA inhibitors. Here, a combine approach of shape-based pharmacophore and descriptor-based 2D QSAR was used to identify the potential direct InhA inhibitors. The approach is duly assisted with in vitro testing and molecular dynamics simulations. A combination of empirical parameters was derived to use as a filter for cell wall permeability while 2D QSAR was used as another filter to predict the biological activity. Both filters were applied to prioritize the molecules for biological evaluation against anti-TB activity. It led to 6 potential molecules which showed > 90% inhibition of H37Rv strain of Mycobacterium tuberculosis in BACTEC assay. Further, MMGBSA binding free energy of identified molecules was compared with available highly potent molecule, 5-hexyl-2-(2-methylphenoxy) phenol (IC50 = 5nM) using molecular dynamics simulations. It showed two molecules with comparatively higher affinity toward InhA as compared to potent molecule. It indicated the candidature of identified molecules to be further considered in anti-TB drug development pipeline.
Collapse
Affiliation(s)
- Vivek Kumar
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| | - Sarbjit Singh Jhamb
- b Common Biological Testing Lab (CBTL), Department of Pharmaceuticals , National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| | - M Elizabeth Sobhia
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| |
Collapse
|
11
|
Abstract
Tuberculosis caused by Mycobacterium tuberculosis is a global health emergency. This deadly disease has far-reaching social and economic implications. Diseased individuals need prolonged polypharmacy which is not without ill effects. Treatment compliance is often compromised contributing to rising resistance. HIV co-infection has further worsened the scenario. On the other hand, no new anti-TB drug has hit the market in last 4–5 decades. After a long latency, only the last few years have witnessed growing research in this direction and a widening anti-TB drug clinical pipeline. The compounds in preclinical stage of development have also shown a heartening increase. The present review is an attempt to discuss novel promising patents in this field.
Collapse
|
12
|
Bhutani I, Loharch S, Gupta P, Madathil R, Parkesh R. Structure, dynamics, and interaction of Mycobacterium tuberculosis (Mtb) DprE1 and DprE2 examined by molecular modeling, simulation, and electrostatic studies. PLoS One 2015; 10:e0119771. [PMID: 25789990 PMCID: PMC4366402 DOI: 10.1371/journal.pone.0119771] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/03/2015] [Indexed: 11/18/2022] Open
Abstract
The enzymes decaprenylphosphoryl-β-D-ribose oxidase (DprE1) and decaprenylphosphoryl-β-D-ribose-2-epimerase (DprE2) catalyze epimerization of decaprenylphosporyl ribose (DPR) todecaprenylphosporyl arabinose (DPA) and are critical for the survival of Mtb. Crystal structures of DprE1 so far reported display significant disordered regions and no structural information is known for DprE2. We used homology modeling, protein threading, molecular docking and dynamics studies to investigate the structural and dynamic features of Mtb DprE1 and DprE2 and DprE1-DprE2 complex. A three-dimensional model for DprE2 was generated using the threading approach coupled with ab initio modeling. A 50 ns simulation of DprE1 and DprE2 revealed the overall stability of the structures. Principal Component Analysis (PCA) demonstrated the convergence of sampling in both DprE1 and DprE2. In DprE1, residues in the 269–330 area showed considerable fluctuation in agreement with the regions of disorder observed in the reported crystal structures. In DprE2, large fluctuations were detected in residues 95–113, 146–157, and 197–226. The study combined docking and MD simulation studies to map and characterize the key residues involved in DprE1-DprE2 interaction. A 60 ns MD simulation for DprE1-DprE2 complex was also performed. Analysis of data revealed that the docked complex is stabilized by H-bonding, hydrophobic and ionic interactions. The key residues of DprE1 involved in DprE1-DprE2 interactions belong to the disordered region. We also examined the docked complex of DprE1-BTZ043 to investigate the binding pocket of DprE1 and its interactions with the inhibitor BTZ043. In summary, we hypothesize that DprE1-DprE2 interaction is crucial for the synthesis of DPA and DprE1-DprE2 complex may be a new therapeutic target amenable to pharmacological validation. The findings have important implications in tuberculosis (TB) drug discovery and will facilitate drug development efforts against TB.
Collapse
Affiliation(s)
- Isha Bhutani
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India
| | - Saurabh Loharch
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India
| | - Pawan Gupta
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India
| | - Rethi Madathil
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India
| | - Raman Parkesh
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India
- * E-mail:
| |
Collapse
|
13
|
Moraes GL, Gomes GC, Monteiro de Sousa PR, Alves CN, Govender T, Kruger HG, Maguire GEM, Lamichhane G, Lameira J. Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development. Tuberculosis (Edinb) 2015; 95:95-111. [PMID: 25701501 DOI: 10.1016/j.tube.2015.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) is the second leading cause of human mortality from infectious diseases worldwide. The WHO reported 1.3 million deaths and 8.6 million new cases of TB in 2012. Mycobacterium tuberculosis (M. tuberculosis), the infectious bacteria that causes TB, is encapsulated by a thick and robust cell wall. The innermost segment of the cell wall is comprised of peptidoglycan, a layer that is required for survival and growth of the pathogen. Enzymes that catalyse biosynthesis of the peptidoglycan are essential and are therefore attractive targets for discovery of novel antibiotics as humans lack similar enzymes making it possible to selectively target bacteria only. In this paper, we have reviewed the structures and functions of enzymes GlmS, GlmM, GlmU, MurA, MurB, MurC, MurD, MurE and MurF from M. tuberculosis that are involved in peptidoglycan biosynthesis. In addition, we report homology modelled 3D structures of those key enzymes from M. tuberculosis of which the structures are still unknown. We demonstrated that natural substrates can be successfully docked into the active sites of the GlmS and GlmU respectively. It is therefore expected that the models and the data provided herein will facilitate translational research to develop new drugs to treat TB.
Collapse
Affiliation(s)
- Gleiciane Leal Moraes
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Guelber Cardoso Gomes
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Paulo Robson Monteiro de Sousa
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Gyanu Lamichhane
- Johns Hopkins University School of Medicine, Taskforce to Study Resistance Emergence & Antimicrobial Development Technology, 1503 E. Jefferson St, Baltimore, MD 21231, USA
| | - Jerônimo Lameira
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil.
| |
Collapse
|
14
|
Uridine monophosphate kinase as potential target for tuberculosis: From target to lead identification. Interdiscip Sci 2014; 5:296-311. [DOI: 10.1007/s12539-013-0180-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/31/2022]
|