1
|
Wachananawat B, Kong BL, Shaw P, Bongcheewin B, Sangvirotjanapat S, Prombutara P, Pornputtapong N, Sukrong S. Characterization and phylogenetic analysis of the complete chloroplast genome of Curcuma comosa and C. latifolia. Heliyon 2024; 10:e31248. [PMID: 38813184 PMCID: PMC11133819 DOI: 10.1016/j.heliyon.2024.e31248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Members of the Curcuma genus, a crop in the Zingiberaceae, are widely utilized rhizomatous herbs globally. There are two distinct species, C. comosa Roxb. and C. latifolia Roscoe, referred to the same vernacular name "Wan Chak Motluk" in Thai. C. comosa holds economic importance and is extensively used as a Thai traditional medicine due to its phytoestrogenic properties. However, its morphology closely resembles that of C. latifolia, which contains zederone, a compound known for its hepatotoxic effects. They are often confused, which may affect the quality, efficacy and safety of the derived herbal materials. Thus, DNA markers were developed for discriminating C. comosa from C. latifolia. This study focused on analyzing core DNA barcode regions, including rbcL, matK, psbA-trnH spacer and ITS2, of the authentic C. comosa and C. latifolia species. As a result, no variable nucleotides in core DNA barcode regions were observed. The complete chloroplast (cp) genome was introduced to differentiate between the two species. The comparison revealed that the cp genomes of C. comosa and C. latifolia were 162,272 and 162,289 bp, respectively, with a total of 133 identified genes. The phylogenetic analysis revealed that C. comosa and C. latifolia exhibited a very close relationship with other Curcuma species. The cp genome of C. comosa and C. latifolia were identified for the first time, providing valuable insights for species identification and evolutionary research within the Zingiberaceae family.
Collapse
Affiliation(s)
- Bussarin Wachananawat
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bobby Lim‐Ho Kong
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, N.T., China
| | - Pang‐Chui Shaw
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine and Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, N.T., China
| | - Bhanubong Bongcheewin
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Center of Excellence in Herbal Medicine and Natural Products, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
- Sireeruckhachati Nature Learning Park, Mahidol University, Nakhon Pathom, 73170, Thailand
| | | | - Pinidphon Prombutara
- Faculty of Science, Omics Science & Bioinformatics Center, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Waswa EN, Mkala EM, Odago WO, Amenu SG, Mutinda ES, Muthui SW, Ding SX, Hu GW, Wang QF. Comparative chloroplast genome analysis of Sambucus L. (Viburnaceae): inference for phylogenetic relationships among the closely related Sambucus adnata Wall. ex DC Sambucus javanica Blume. FRONTIERS IN PLANT SCIENCE 2023; 14:1179510. [PMID: 37396648 PMCID: PMC10313135 DOI: 10.3389/fpls.2023.1179510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Sambucus L. is found in the family Viburnaceae (syn. Adoxaceae) and encompasses approximately 29 accepted species. The complex morphology of these species has caused continued confusion concerning their nomenclature, classification, and identification. Despite previous attempts to resolve taxonomic complexities in the Sambucus genus, there are still unclear phylogenetic relationships among several species. In this study, the newly obtained plastome of Sambucus williamsii Hance. as well as the populations of Sambucus canadensis L., Sambucus javanica Blume, and Sambucus adnata Wall. ex DC were sequenced, and their sizes, structural similarity, gene order, gene number, and guanine-cytosine (GC) contents were analyzed. The phylogenetic analyses were conducted using the whole chloroplast genomes and protein-coding genes (PCGs). The findings revealed that the chloroplast genomes of Sambucus species exhibited typical quadripartite double-stranded DNA molecules. Their lengths ranged from 158,012 base pairs (bp) (S. javanica) to 158,716 bp (S. canadensis L). Each genome comprised a pair of inverted repeats (IRs), which separated the large single-copy (LSC) and small single-copy (SSC) regions. In addition, the plastomes contained 132 genes, encompassing 87 protein-coding, 37 tRNA, and four rRNA genes. In the simple sequence repeat (SSR) analysis, A/T mononucleotides had the highest proportion, with the most repetitive sequences observed in S. williamsii. The comparative genome analyses showed high similarities in structure, order, and gene contents. The hypervariable regions in the studied chloroplast genomes were trnT-GGU, trnF-GAA, psaJ, trnL-UAG, ndhF, and ndhE, which may be used as candidate barcodes for species discrimination in Sambucus genus. Phylogenetic analyses supported the monophyly of Sambucus and revealed the separation of S. javanica and S. adnata populations. Sambucus chinensis Lindl. was nested within S. javanica in the same clade, collaborating their conspecific treatment. These outcomes indicate that the chloroplast genome of Sambucus plants is a valuable genetic resource for resolving taxonomic discrepancies at the lower taxonomic levels and can be applied in molecular evolutionary studies.
Collapse
Affiliation(s)
- Emmanuel Nyongesa Waswa
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Elijah Mbandi Mkala
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Wyclif Ochieng Odago
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Sara Getachew Amenu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Elizabeth Syowai Mutinda
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Samuel Wamburu Muthui
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Xiong Ding
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Botany Department, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Waswa EN, Mkala EM, Odago WO, Amenu SG, Mutinda ES, Muthui SW, Ding SX, Hu GW, Wang QF. Comparative chloroplast genome analysis of Sambucus L. (Viburnaceae): inference for phylogenetic relationships among the closely related Sambucus adnata Wall. ex DC Sambucus javanica Blume. FRONTIERS IN PLANT SCIENCE 2023; 14. [DOI: https:/doi.org/10.3389/fpls.2023.1179510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Sambucus L. is found in the family Viburnaceae (syn. Adoxaceae) and encompasses approximately 29 accepted species. The complex morphology of these species has caused continued confusion concerning their nomenclature, classification, and identification. Despite previous attempts to resolve taxonomic complexities in the Sambucus genus, there are still unclear phylogenetic relationships among several species. In this study, the newly obtained plastome of Sambucus williamsii Hance. as well as the populations of Sambucus canadensis L., Sambucus javanica Blume, and Sambucus adnata Wall. ex DC were sequenced, and their sizes, structural similarity, gene order, gene number, and guanine–cytosine (GC) contents were analyzed. The phylogenetic analyses were conducted using the whole chloroplast genomes and protein-coding genes (PCGs). The findings revealed that the chloroplast genomes of Sambucus species exhibited typical quadripartite double-stranded DNA molecules. Their lengths ranged from 158,012 base pairs (bp) (S. javanica) to 158,716 bp (S. canadensis L). Each genome comprised a pair of inverted repeats (IRs), which separated the large single-copy (LSC) and small single-copy (SSC) regions. In addition, the plastomes contained 132 genes, encompassing 87 protein-coding, 37 tRNA, and four rRNA genes. In the simple sequence repeat (SSR) analysis, A/T mononucleotides had the highest proportion, with the most repetitive sequences observed in S. williamsii. The comparative genome analyses showed high similarities in structure, order, and gene contents. The hypervariable regions in the studied chloroplast genomes were trnT-GGU, trnF-GAA, psaJ, trnL-UAG, ndhF, and ndhE, which may be used as candidate barcodes for species discrimination in Sambucus genus. Phylogenetic analyses supported the monophyly of Sambucus and revealed the separation of S. javanica and S. adnata populations. Sambucus chinensis Lindl. was nested within S. javanica in the same clade, collaborating their conspecific treatment. These outcomes indicate that the chloroplast genome of Sambucus plants is a valuable genetic resource for resolving taxonomic discrepancies at the lower taxonomic levels and can be applied in molecular evolutionary studies.
Collapse
|
4
|
Jiang D, Cai X, Gong M, Xia M, Xing H, Dong S, Tian S, Li J, Lin J, Liu Y, Li HL. Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC Genomics 2023; 24:30. [PMID: 36653780 PMCID: PMC9848714 DOI: 10.1186/s12864-023-09115-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The genus Zingiber of the Zingiberaceae is distributed in tropical, subtropical, and in Far East Asia. This genus contains about 100-150 species, with many species valued as important agricultural, medicinal and horticultural resources. However, genomic resources and suitable molecular markers for species identification are currently sparse. RESULTS We conducted comparative genomics and phylogenetic analyses on Zingiber species. The Zingiber chloroplast genome (size range 162,507-163,711 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 86,986-88,200 bp), a small single copy (SSC, 15,498-15,891 bp) and a pair of inverted repeats (IRs, 29,765-29,934 bp). The genomes contain 113 unique genes, including 79 protein coding genes, 30 tRNA and 4 rRNA genes. The genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats are conservative in the genomes of Zingiber. The analysis of sequence divergence indicates that the following genes undergo positive selection (ccsA, ndhA, ndhB, petD, psbA, psbB, psbC, rbcL, rpl12, rpl20, rpl23, rpl33, rpoC2, rps7, rps12 and ycf3). Eight highly variable regions are identified including seven intergenic regions (petA-pabJ, rbcL-accD, rpl32-trnL-UAG, rps16-trnQ-UUG, trnC-GCA-psbM, psbC-trnS-UGA and ndhF-rpl32) and one genic regions (ycf1). The phylogenetic analysis revealed that the sect. Zingiber was sister to sect. Cryptanthium rather than sect. Pleuranthesis. CONCLUSIONS This study reports 14 complete chloroplast genomes of Zingiber species. Overall, this study provided a solid backbone phylogeny of Zingiber. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for Zingiber) of the generation of DNA markers. These results provide a foundation for future studies that seek to understand the molecular evolutionary dynamics or individual population variation in the genus Zingiber.
Collapse
Affiliation(s)
- Dongzhu Jiang
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.410654.20000 0000 8880 6009College of Horticulture and Gardening, Yangtze University, Jingzhou, 433200 China
| | - Xiaodong Cai
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Min Gong
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.411581.80000 0004 1790 0881College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100 China
| | - Maoqin Xia
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Haitao Xing
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Shanshan Dong
- grid.9227.e0000000119573309Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004 China
| | - Shuming Tian
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.411581.80000 0004 1790 0881College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100 China
| | - Jialin Li
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Junyao Lin
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| | - Yiqing Liu
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China ,grid.410654.20000 0000 8880 6009College of Horticulture and Gardening, Yangtze University, Jingzhou, 433200 China
| | - Hong-Lei Li
- grid.449955.00000 0004 1762 504XCollege of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Yongchuan, 402160 China
| |
Collapse
|
5
|
Yaradua SS, Yessoufou K. The Complete Chloroplast Genome of Hypoestes forskaolii (Vahl) R.Br: Insights into Comparative and Phylogenetic Analyses within the Tribe Justiceae. Genes (Basel) 2022; 13:2259. [PMID: 36553525 PMCID: PMC9778027 DOI: 10.3390/genes13122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Hypoestes forskaolii is one of the most important species of the family Acanthaceae, known for its high economic and medicinal importance. It is well distributed in the Arab region as well as on the African continent. Previous studies on ethnomedicine have reported that H. forskaolii has an anti-parasitic effect as well as antimalarial and anthelmintic activities. Previous studies mainly focused on the ethnomedicinal properties, hence, there is no information on the genomic architecture and phylogenetic positions of the species within the tribe Justiceae. The tribe Justicieae is the most taxonomically difficult taxon in Acanthoideae due to its unresolved infratribal classification. Therefore, by sequencing the complete chloroplast genome (cp genome) of H. forskaolii, we explored the evolutionary patterns of the cp genome and reconstructed the phylogeny of Justiceae. The cp genome is quadripartite and circular in structure and has a length of 151,142 bp. There are 130 genes (86 coding for protein, 36 coding for tRNA and 8 coding for rRNA) present in the plastome. Analyses of long repeats showed only three types of repeats: forward, palindromic and reverse were present in the genome. Microsatellites analysis revealed 134 microsatellites in the cp genome with mononucleotides having the highest frequency. Comparative analyses within Justiceae showed that genomes structure and gene contents were highly conserved but there is a slight distinction in the location of the genes in the inverted repeat and single copy junctions. Additionally, it was discovered that the cp genome includes variable hotspots that can be utilized as DNA barcodes and tools for determining evolutionary relationships in the Justiceae. These regions include: atpH-atpI, trnK-rps16, atpB-rbcL, trnT-trnL, psbI-trnS, matK, trnH-psbA, and ndhD. The Bayesian inference phylogenetic tree showed that H. forskaolii is a sister to the Dicliptra clade and belongs to Diclipterinae. The result also confirms the polyphyly of Justicia and inclusion of Diclipterinae within justicioid. This research has revealed the phylogenetic position of H. forskaolii and also reported the resources that can be used for evolutionary and phylogenetic studies of the species and the Justicieae.
Collapse
Affiliation(s)
- Samaila Samaila Yaradua
- Department of Geography, Environmental Management and Energy Studies, APK Campus, University of Johannesburg, Johannesburg 2006, South Africa
- Department of Biology, Umaru Musa Yaradua University, Katsina 820102, Nigeria
| | - Kowiyou Yessoufou
- Department of Geography, Environmental Management and Energy Studies, APK Campus, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
6
|
Complete Chloroplast Genome Features of Dendrocalamusfarinosus and Its Comparison and Evolutionary Analysis with Other Bambusoideae Species. Genes (Basel) 2022; 13:genes13091519. [PMID: 36140690 PMCID: PMC9498922 DOI: 10.3390/genes13091519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendrocalamus farinosus is one of the essential bamboo species mainly used for food and timber in the southwestern region of China. In this study, the complete chloroplast (cp) genome of D. farinosus is sequenced, assembled, and the phylogenetic relationship analyzed. The cp genome has a circular and quadripartite structure, has a total length of 139,499 bp and contains 132 genes: 89 protein-coding genes, eight rRNAs and 35 tRNAs. The repeat analyses showed that three types of repeats (palindromic, forward and reverse) are present in the genome. A total of 51 simple sequence repeats are identified in the cp genome. The comparative analysis between different species belonging to Dendrocalamus revealed that although the cp genomes are conserved, many differences exist between the genomes. The analysis shows that the non-coding regions were more divergent than the coding regions, and the inverted repeat regions are more conserved than the single-copy regions. Moreover, these results also indicate that rpoC2 may be used to distinguish between different bamboo species. Phylogenetic analysis results supported that D. farinosus was closely related to D. latiflorus. Furthermore, these bamboo species’ geographical distribution and rhizome types indicate two evolutionary pathways: one is from the tropics to the alpine zone, and the other is from the tropics to the warm temperate zone. Our study will be helpful in the determination of the cp genome sequences of D. farinosus, and provides new molecular data to understand the Bambusoideae evolution.
Collapse
|
7
|
Huang Y, Li J, Yang Z, An W, Xie C, Liu S, Zheng X. Comprehensive analysis of complete chloroplast genome and phylogenetic aspects of ten Ficus species. BMC PLANT BIOLOGY 2022; 22:253. [PMID: 35606691 PMCID: PMC9125854 DOI: 10.1186/s12870-022-03643-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The large genus Ficus comprises approximately 800 species, most of which possess high ornamental and ecological values. However, its evolutionary history remains largely unknown. Plastome (chloroplast genome) analysis had become an essential tool for species identification and for unveiling evolutionary relationships between species, genus and other rank groups. In this work we present the plastomes of ten Ficus species. RESULTS The complete chloroplast (CP) genomes of eleven Ficus specimens belonging to ten species were determined and analysed. The full length of the Ficus plastome was nearly 160 kbp with a similar overall GC content, ranging from 35.88 to 36.02%. A total of 114 unique genes, distributed in 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, were annotated in each of the Ficus CP genome. In addition, these CP genomes showed variation in their inverted repeat regions (IR). Tandem repeats and mononucleotide simple sequence repeat (SSR) are widely distributed across the Ficus CP genome. Comparative genome analysis showed low sequence variability. In addition, eight variable regions to be used as potential molecular markers were proposed for future Ficus species identification. According to the phylogenetic analysis, these ten Ficus species were clustered together and further divided into three clades based on different subgenera. Simultaneously, it also showed the relatedness between Ficus and Morus. CONCLUSION The chloroplast genome structure of 10 Ficus species was similar to that of other angiosperms, with a typical four-part structure. Chloroplast genome sizes vary slightly due to expansion and contraction of the IR region. And the variation of noncoding regions of the chloroplast genome is larger than that of coding regions. Phylogenetic analysis showed that these eleven sampled CP genomes were divided into three clades, clustered with species from subgenus Urostigma, Sycomorus, and Ficus, respectively. These results support the Berg classification system, in which the subgenus Ficus was further decomposed into the subgenus Sycomorus. In general, the sequencing and analysis of Ficus plastomes, especially the ones of species with no or limited sequences available yet, contribute to the study of genetic diversity and species evolution of Ficus, while providing useful information for taxonomic and phylogenetic studies of Ficus.
Collapse
Affiliation(s)
- Yuying Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Jing Li
- Traditional Chinese Medicine Gynecology Laboratory in Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510410, China
| | - Zerui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Wenli An
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Chunzhu Xie
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Comparative Analyses of Chloroplast Genomes Provide Comprehensive Insights into the Adaptive Evolution of Paphiopedilum (Orchidaceae). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An elucidation of how the selection pressures caused by habitat environments affect plant plastid genomes and lead to the adaptive evolution of plants, is a very intense area of research in evolutionary biology. The genus Paphiopedilum is a predominant group of orchids that includes over 66 species with high horticultural and ornamental value. However, owing to the destructive exploitation and habitat deterioration of wild germplasm resources of Paphiopedilum, it needs more molecular genetic resources and studies on this genus. The chloroplast is cytoplasmically inherited and often used in evolutionary studies. Thus, for this study, we newly sequenced, assembled and annotated five chloroplast genomes of the Paphiopedilum species. The size of these genomes ranged from 155,886 bp (P. henryanum) to 160,503 bp (P. ‘GZSLKY’ Youyou) and they contained 121–122 genes, which consisted of 76 protein coding genes, eight ribosomal RNAs, and 37–38 transfer RNAs. Combined with the other 14 Paphiopedilum species, the characteristics of the repeat sequences, divergent hotspot regions, and the condo usage bias were evaluated and identified, respectively. The gene transfer analysis showed that some fragments of the ndh and ycf gene families were shared by both the chloroplast and nucleus. Although the genomic structure and gene content was conserved, there was a significant boundary shift caused by the inverted repeat (IR) expansion and small single copy (SSC) contraction. The lower GC content and loss of ndh genes could be the result of adaptive evolutionary responses to its unique habitats. The genes under positive selection, including accD, matK, psbM, rpl20, rps12, ycf1, and ycf2 might be regarded as potential candidate genes for further study, which significantly contribute to the adaptive evolution of Paphiopedilum.
Collapse
|
9
|
Alzahrani DA. Complete Chloroplast Genome of Abutilon fruticosum: Genome Structure, Comparative and Phylogenetic Analysis. PLANTS 2021; 10:plants10020270. [PMID: 33573201 PMCID: PMC7911161 DOI: 10.3390/plants10020270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/30/2022]
Abstract
Abutilon fruticosum is one of the endemic plants with high medicinal and economic value in Saudi Arabia and belongs to the family Malvaceae. However, the plastome sequence and phylogenetic position have not been reported until this study. In this research, the complete chloroplast genome of A. fruticosum was sequenced and assembled, and comparative and phylogenetic analyses within the Malvaceae family were conducted. The chloroplast genome (cp genome) has a circular and quadripartite structure with a total length of 160,357 bp and contains 114 unique genes (80 protein-coding genes, 30 tRNA genes and 4 rRNA genes). The repeat analyses indicate that all the types of repeats (palindromic, complement, forward and reverse) were present in the genome, with palindromic occurring more frequently. A total number of 212 microsatellites were identified in the plastome, of which the majority are mononucleotides. Comparative analyses with other species of Malvaceae indicate a high level of resemblance in gene content and structural organization and a significant level of variation in the position of genes in single copy and inverted repeat borders. The analyses also reveal variable hotspots in the genomes that can serve as barcodes and tools for inferring phylogenetic relationships in the family: the regions include trnH-psbA, trnK-rps16, psbI-trnS, atpH-atpI, trnT-trnL, matK, ycf1 and ndhH. Phylogenetic analysis indicates that A. fruticosum is closely related to Althaea officinalis, which disagrees with the previous systematic position of the species. This study provides insights into the systematic position of A. fruticosum and valuable resources for further phylogenetic and evolutionary studies of the species and the Malvaceae family to resolve ambiguous issues within the taxa.
Collapse
Affiliation(s)
- Dhafer A Alzahrani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Gu L, Su T, An MT, Hu GX. The Complete Chloroplast Genome of the Vulnerable Oreocharis esquirolii (Gesneriaceae): Structural Features, Comparative and Phylogenetic Analysis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1692. [PMID: 33276435 PMCID: PMC7760870 DOI: 10.3390/plants9121692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/03/2022]
Abstract
Oreocharis esquirolii, a member of Gesneriaceae, is known as Thamnocharis esquirolii, which has been regarded a synonym of the former. The species is endemic to Guizhou, southwestern China, and is evaluated as vulnerable (VU) under the International Union for Conservation of Nature (IUCN) criteria. Until now, the sequence and genome information of O. esquirolii remains unknown. In this study, we assembled and characterized the complete chloroplast (cp) genome of O. esquirolii using Illumina sequencing data for the first time. The total length of the cp genome was 154,069 bp with a typical quadripartite structure consisting of a pair of inverted repeats (IRs) of 25,392 bp separated by a large single copy region (LSC) of 85,156 bp and a small single copy region (SSC) of18,129 bp. The genome comprised 114 unique genes with 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. Thirty-one repeat sequences and 74 simple sequence repeats (SSRs) were identified. Genome alignment across five plastid genomes of Gesneriaceae indicated a high sequence similarity. Four highly variable sites (rps16-trnQ, trnS-trnG, ndhF-rpl32, and ycf 1) were identified. Phylogenetic analysis indicated that O. esquirolii grouped together with O. mileensis, supporting resurrection of the name Oreocharis esquirolii from Thamnocharisesquirolii. The complete cp genome sequence will contribute to further studies in molecular identification, genetic diversity, and phylogeny.
Collapse
Affiliation(s)
- Li Gu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (L.G.); (T.S.)
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region Ministry of Education, Guizhou University, Guiyang 550025, China
- Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Ting Su
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (L.G.); (T.S.)
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region Ministry of Education, Guizhou University, Guiyang 550025, China
- Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Ming-Tai An
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Guo-Xiong Hu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (L.G.); (T.S.)
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Munyao JN, Dong X, Yang JX, Mbandi EM, Wanga VO, Oulo MA, Saina JK, Musili PM, Hu GW. Complete Chloroplast Genomes of Chlorophytum comosum and Chlorophytum gallabatense: Genome Structures, Comparative and Phylogenetic Analysis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E296. [PMID: 32121524 PMCID: PMC7154914 DOI: 10.3390/plants9030296] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022]
Abstract
The genus Chlorophytum includes many economically important species well-known for medicinal, ornamental, and horticultural values. However, to date, few molecular genomic resources have been reported for this genus. Therefore, there is limited knowledge of phylogenetic studies, and the available chloroplast (cp) genome of Chlorophytum (C. rhizopendulum) does not provide enough information on this genus. In this study, we present genomic resources for C. comosum and C. gallabatense, which had lengths of 154,248 and 154,154 base pairs (bp), respectively. They had a pair of inverted repeats (IRa and IRb) of 26,114 and 26,254 bp each in size, separating the large single-copy (LSC) region of 84,004 and 83,686 bp from the small single-copy (SSC) region of 18,016 and 17,960 bp in C. comosum and C. gallabatense, respectively. There were 112 distinct genes in each cp genome, which were comprised of 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative analysis with five other selected species displayed a generally high level of sequence resemblance in structural organization, gene content, and arrangement. Additionally, the phylogenetic analysis confirmed the previous phylogeny and produced a phylogenetic tree with similar topology. It showed that the Chlorophytum species (C. comosum, C. gallabatense and C. rhizopendulum) were clustered together in the same clade with a closer relationship than other plants to the Anthericum ramosum. This research, therefore, presents valuable records for further molecular evolutionary and phylogenetic studies which help to fill the gap in genomic resources and resolve the taxonomic complexes of the genus.
Collapse
Affiliation(s)
- Jacinta N. Munyao
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Dong
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Xin Yang
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Elijah M. Mbandi
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vincent O. Wanga
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Millicent A. Oulo
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Josphat K. Saina
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul M. Musili
- East Africa Herbarium, National Museums of Kenya, P.O. Box 45166 00100 Nairobi, Kenya;
| | - Guang-Wan Hu
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Comprehensive Analysis of Rhodomyrtus tomentosa Chloroplast Genome. PLANTS 2019; 8:plants8040089. [PMID: 30987338 PMCID: PMC6524380 DOI: 10.3390/plants8040089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
In the last decade, several studies have relied on a small number of plastid genomes to deduce deep phylogenetic relationships in the species-rich Myrtaceae. Nevertheless, the plastome of Rhodomyrtus tomentosa, an important representative plant of the Rhodomyrtus (DC.) genera, has not yet been reported yet. Here, we sequenced and analyzed the complete chloroplast (CP) genome of R. tomentosa, which is a 156,129-bp-long circular molecule with 37.1% GC content. This CP genome displays a typical quadripartite structure with two inverted repeats (IRa and IRb), of 25,824 bp each, that are separated by a small single copy region (SSC, 18,183 bp) and one large single copy region (LSC, 86,298 bp). The CP genome encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, eight rRNA genes and three pseudogenes (ycf1, rps19, ndhF). A considerable number of protein-coding genes have a universal ATG start codon, except for psbL and ndhD. Premature termination codons (PTCs) were found in one protein-coding gene, namely atpE, which is rarely reported in the CP genome of plants. Phylogenetic analysis revealed that R. tomentosa has a sister relationship with Eugenia uniflora and Psidium guajava. In conclusion, this study identified unique characteristics of the R. tomentosa CP genome providing valuable information for further investigations on species identification and the phylogenetic evolution between R. tomentosa and related species.
Collapse
|