1
|
Abstract
In this era of big data, sets of methodologies and strategies are designed to extract knowledge from huge volumes of data. However, the cost of where and how to get this information accurately and quickly is extremely important, given the diversity of genomes and the different ways of representing that information. Among the huge set of information and relationships that the genome carries, there are sequences called miRNAs (microRNAs). These sequences were described in the 1990s and are mainly involved in mechanisms of regulation and gene expression. Having this in mind, this chapter focuses on exploring the available literature and providing useful and practical guidance on the miRNA database and tools topic. For that, we organized and present this text in two ways: (a) the update reviews and articles, which best summarize and discuss the theme; and (b) our update investigation on miRNA literature and portals about databases and tools. Finally, we present the main challenge and a possible solution to improve resources and tools.
Collapse
Affiliation(s)
- Tharcísio Soares de Amorim
- Department of Computer Science and Bioinformatics and Pattern Recognition Group, Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Brazil
| | - Daniel Longhi Fernandes Pedro
- Department of Computer Science and Bioinformatics and Pattern Recognition Group, Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science and Bioinformatics and Pattern Recognition Group, Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Brazil.
| |
Collapse
|
2
|
ShengPeng Y, Hong W. RSCMDA: Prediction of Potential miRNA-Disease Associations Based on a Robust Similarity Constraint Learning Method. Interdiscip Sci 2021; 13:559-571. [PMID: 34247324 DOI: 10.1007/s12539-021-00459-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
With the rapid development of biotechnology and computer technology, increasing studies have shown that the occurrence of many diseases in the human body is closely related to the dysfunction of miRNA, and the relationship between them has become a new research hotspot. Exploring disease-related miRNAs information provides a new perspective for understanding the etiology and pathogenesis of diseases. In this study, we proposed a new method based on similarity constrained learning (RSCMDA) to infer disease-associated miRNAs. Considering the problems of noise and incomplete information in current biological datasets, we designed a new framework RSCMDA, which can learn a new disease similarity network and miRNA similarity network based on the existing biological information, and then update the predicted miRNA-disease associations using robust similarity constraint learning method. Consequently, the AUC scores obtained in the global and local cross-validation of RSCMDA are 0.9465 and 0.8494, respectively, which are superior to the other methods. Besides, the prediction performance of RSCMDA is further confirmed by the case study on lung Neoplasms, because 94% of the top 50 miRNAs predicted by the RSCMDA method are confirmed from the existing biological databases or research results. All the results show that RSCMDA is a reliable and effective framework, which can be used as new technology to explore the relationship between miRNA and disease.
Collapse
Affiliation(s)
- Yu ShengPeng
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China
| | - Wang Hong
- School of Information Science and Engineering, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
3
|
Reducing Cardiac Injury during ST-Elevation Myocardial Infarction: A Reasoned Approach to a Multitarget Therapeutic Strategy. J Clin Med 2021; 10:jcm10132968. [PMID: 34279451 PMCID: PMC8268641 DOI: 10.3390/jcm10132968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The significant reduction in ‘ischemic time’ through capillary diffusion of primary percutaneous intervention (pPCI) has rendered myocardial-ischemia reperfusion injury (MIRI) prevention a major issue in order to improve the prognosis of ST elevation myocardial infarction (STEMI) patients. In fact, while the ischemic damage increases with the severity and the duration of blood flow reduction, reperfusion injury reaches its maximum with a moderate amount of ischemic injury. MIRI leads to the development of post-STEMI left ventricular remodeling (post-STEMI LVR), thereby increasing the risk of arrhythmias and heart failure. Single pharmacological and mechanical interventions have shown some benefits, but have not satisfactorily reduced mortality. Therefore, a multitarget therapeutic strategy is needed, but no univocal indications have come from the clinical trials performed so far. On the basis of the results of the consistent clinical studies analyzed in this review, we try to design a randomized clinical trial aimed at evaluating the effects of a reasoned multitarget therapeutic strategy on the prevention of post-STEMI LVR. In fact, we believe that the correct timing of pharmacological and mechanical intervention application, according to their specific ability to interfere with survival pathways, may significantly reduce the incidence of post-STEMI LVR and thus improve patient prognosis.
Collapse
|
4
|
Dutka M, Bobiński R, Ulman-Włodarz I, Hajduga M, Bujok J, Pająk C, Ćwiertnia M. Various aspects of inflammation in heart failure. Heart Fail Rev 2021; 25:537-548. [PMID: 31705352 PMCID: PMC7181445 DOI: 10.1007/s10741-019-09875-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant advances in the prevention and treatment of heart failure (HF), the prognosis in patients who have been hospitalised on at least one occasion due to exacerbation of HF is still poor. Therefore, a better understanding of the underlying pathophysiological mechanisms of HF is crucial in order to achieve better results in the treatment of this clinical syndrome. One of the areas that, for years, has aroused the interest of researchers is the activation of the immune system and the elevated levels of biomarkers of inflammation in patients with both ischaemic and non-ischaemic HF. Additionally, it is intriguing that the level of circulating pro-inflammatory biomarkers correlates with the severity of the disease and prognosis in this group of patients. Unfortunately, clinical trials aimed at assessing interventions to modulate the inflammatory response in HF have been disappointing, and the modulation of the inflammatory response has had either no effect or even a negative effect on the HF prognosis. The article presents a summary of current knowledge on the role of immune system activation and inflammation in the pathogenesis of HF. Understanding the immunological mechanisms pathogenetically associated with left ventricular remodelling and progression of HF may open up new therapeutic possibilities for HF.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland.
| | - Rafał Bobiński
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| | - Izabela Ulman-Włodarz
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| | - Maciej Hajduga
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| | - Jan Bujok
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| | - Celina Pająk
- Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| | - Michał Ćwiertnia
- Faculty of Health Sciences, Department of Emergency Medicine, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biala, Poland
| |
Collapse
|
5
|
Chen L, Xiao D, Tang F, Gao H, Li X. CAPN6 in disease: An emerging therapeutic target (Review). Int J Mol Med 2020; 46:1644-1652. [PMID: 33000175 PMCID: PMC7521557 DOI: 10.3892/ijmm.2020.4734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
As a member of the calpain protein family, calpain6 (CAPN6) is highly expressed mainly in the placenta and embryos. It plays a number of important roles in cellular processes, such as the stabilization of microtubules, the main-tenance of cell stability, the control of cell movement and the inhibition of apoptosis. In recent years, various studies have found that CAPN6 is one of the contributing factors associated with the tumorigenesis of uterine tumors and osteosarcoma, and that CAPN6 participates in the development of tumors by promoting cell proliferation and angiogenesis, and by inhibiting apoptosis, which is mainly regulated by the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway. Due to its abnormal cellular expression, CAPN6 has also been found to be associated with a number of diseases, such as white matter damage and muscular dystrophy. Therefore, CAPN6 may be a novel therapeutic target for these diseases. In the present review, the role of CAPN6 in disease and its possible use as a target in various therapies are discussed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fajuan Tang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
Lv Z, Wang S, Zhao W, He N. MicroRNA analysis of NCI-60 human cancer cells indicates that miR-720 and miR-887 are potential therapeutic biomarkers for breast cancer. Drug Discov Ther 2020; 14:197-203. [PMID: 32863323 DOI: 10.5582/ddt.2020.03058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
MicroRNAs (miRNAs) play a vital role in many biological processes, including cell growth, differentiation, apoptosis, development, differentiation, and carcinogenesis. Since miRNAs might play a part in cancer initiation and progression, they comprise an original class of promising diagnostic and prognostic molecular markers. In order to systematically understand the regulation of miRNA expression in cancers, the current study analyzed the miRNA expression profile in NCI-60 human cancer cell lines. Over 300 miRNAs exhibited unique expression profiles in cell lines derived from the same lineage. This study identified 9 lineage-specific miRNA expression patterns. Moreover, results indicated that miR-720 and miR-887 are expressed at relatively high levels in breast cancer cell lines compared to other types of cancer. Ultimately, matching NCI-60 drug response data to miR-720 and miR-887 expression profiles revealed that several FDA-approved drugs were inversely related to miR-720 and miR-887. Furthermore, the anti-cancer effect of perifosine was significantly enhanced by inhibiting miR-720 and decreased by miR-720 precursor treatment in breast cancer cell lines. 5-Fu treatment was enhanced by inhibiting miR-887 and decreased by miR-887 precursor treatment. The current results offer insight into the relationship between miRNA expression and their lineage types, and the approach used here represents a potential cancer therapy with the help of miRNAs.
Collapse
Affiliation(s)
- Zhiyuan Lv
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuo Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wandong Zhao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Su X, Xiao D, Huang L, Li S, Ying J, Tong Y, Ye Q, Mu D, Qu Y. MicroRNA Alteration in Developing Rat Oligodendrocyte Precursor Cells Induced by Hypoxia-Ischemia. J Neuropathol Exp Neurol 2020; 78:900-909. [PMID: 31403686 DOI: 10.1093/jnen/nlz071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs) are involved in the pathogenesis of white matter injury (WMI). However, their roles in developing rat brains under hypoxia-ischemia (HI) insult remain unknown. Here, we examined the expression profiles of miRNAs in oligodendrocyte precursor cells using microarray analysis. We identified 162 miRNAs and only 6 were differentially regulated in HI compared with sham. Next, we used these 6 miRNAs and 525 extensively changed coding genes (fold change absolute: FC(abs) ≥2, p < 0.05) to establish the coexpression network, the result revealed that only 3 miRNAs (miR-142-3p, miR-466b-5p, and miR-146a-5p) have differentially expressed targeted mRNAs. RT-PCR analysis showed that the expression of the miRNAs was consistent with the microarray analysis. Further gene ontology and KEGG pathway analysis of the targets of these 3 miRNAs indicated that they were largely associated with neural activity. Furthermore, we found that 2 of the 3 miRNAs, miR-142-3p, and miR-466b-5p, have the same target gene, Capn6, an antiapoptotic gene that is tightly regulated in the pathogenesis of neurological diseases. Collectively, we have shown that a number of miRNAs change in oligodendrocyte precursor cells in response to HI insult in developing brains, and miR-142-3p/miR-466b-5p/Capn6 pathway might affect the pathogenesis of WMI, providing us new clues for the diagnosis and therapy for WMI.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Yu Tong
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Qianghua Ye
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| |
Collapse
|
8
|
Sheervalilou R, Shahraki O, Hasanifard L, Shirvaliloo M, Mehranfar S, Lotfi H, Pilehvar-Soltanahmadi Y, Bahmanpour Z, Zadeh SS, Nazarlou Z, Kangarlou H, Ghaznavi H, Zarghami N. Electrochemical Nano-biosensors as Novel Approach for the Detection of Lung Cancer-related MicroRNAs. Curr Mol Med 2019; 20:13-35. [DOI: 10.2174/1566524019666191001114941] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In both men and women around the world, lung cancer accounts as the
principal cause of cancer-related death after breast cancer. Therefore, early detection of
the disease is a cardinal step in improving prognosis and survival of patients. Today, the
newly-defined microRNAs regulate about 30 to 60 percent of the gene expression.
Changes in microRNA Profiles are linked to numerous health conditions, making them
sophisticated biomarkers for timely, if not early, detection of cancer. Though evaluation
of microRNAs in real samples has proved to be rather challenging, which is largely
attributable to the unique characteristics of these molecules. Short length, sequence
similarity, and low concentration stand among the factors that define microRNAs.
Recently, diagnostic technologies with a focus on wide-scale point of care have recently
garnered attention as great candidates for early diagnosis of cancer. Electrochemical
nano-biosensors have recently garnered much attention as a molecular method,
showing great potential in terms of sensitivity, specificity and reproducibility, and last but
not least, adaptability to point-of-care testing. Application of nanoscale materials in
electrochemical devices as promising as it is, brings multiplexing potential for conducting
simultaneous evaluations on multiple cancer biomarkers. Thanks to their enthralling
properties, these materials can be used to improve the efficiency of cancer diagnostics,
offer more accurate predictions of prognosis, and monitor response to therapy in a more
efficacious way. This article presents a concise overview of recent advances in the
expeditiously evolving area of electrochemical biosensors for microRNA detection in
lung cancer.
Collapse
Affiliation(s)
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Leili Hasanifard
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar-Soltanahmadi
- Cellular and Molecular Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Bahmanpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadaf Sarraf Zadeh
- Neurosciences Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul 34450, Turkey
| | - Haleh Kangarlou
- Department of Physics, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. MicroRNAs mediate the anti-tumor and protective effects of ginsenosides. Nutr Cancer 2019; 72:1264-1275. [PMID: 31608663 DOI: 10.1080/01635581.2019.1675722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRs(, as short non-coding RNAs, regulate important biological processes and mainly are associated with regulation of gene expression. The miRs are beneficial targets for diagnosis of various disorders, particularly cancer, since their expression profile undergoes alterations in pathological conditions. The numerous drugs have been designed with the capability of targeting miRs for treating pathological conditions. On the other hand, the application of naturally occurring compounds has been increased due to their minimal side effects and valuable biological and therapeutic activities. Ginsenosides are able to act as anti-tumor agents via either increasing or decreasing the expression level of miRs. Ginsenosides affect the expression profile of miRNAs to induce their protective impacts. Angiogenesis as a key factor in the progression of cancer can be suppressed by ginsenosides which is mediated by miR regulation. The aim of this review is to shed some light on the protective and anti-tumor activities of ginsenosides mediated by miRNAs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Veterinary Medicine, Department of Basic Science, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
10
|
Abstract
Myocardial infarction and post-infarction left ventricular remodelling involve a high risk of morbidity and mortality. For this reason, ongoing research is being conducted in order to learn the mechanisms of unfavourable left ventricular remodelling following a myocardial infarction. New biomarkers are also being sought that would allow for early identification of patients with a high risk of post-infarction remodelling and dysfunction of the left ventricle. In recent years, there has been ever more experimental data that confirms the significance of microRNA in cardiovascular diseases. It has been confirmed that microRNAs are stable in systemic circulation, and can be directly measured in patients' blood. It has been found that significant changes occur in the concentrations of various types of microRNA in myocardial infarction and heart failure patients. Various types of microRNA are also currently being intensively researched in terms of their usefulness as markers of cardiomyocyte necrosis, and predictors of the post-infarction heart failure development. This paper is a summary of the current knowledge on the significance of microRNA in post-infarction left ventricular remodelling and heart failure.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Faculty of Health Sciences, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Faculty of Health Sciences, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Jan Korbecki
- Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Faculty of Health Sciences, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
11
|
Tafrihi M, Hasheminasab E. MiRNAs: Biology, Biogenesis, their Web-based Tools, and Databases. Microrna 2019; 8:4-27. [PMID: 30147022 DOI: 10.2174/2211536607666180827111633] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/11/2018] [Accepted: 08/20/2018] [Indexed: 05/25/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs), which are evolutionarily conserved, and endogenous non-coding RNAs, participate in the post-transcriptional regulation of eukaryotic genes. The biogenesis of miRNAs occurs in the nucleus. Then, in the cytoplasm, they are assembled along with some proteins in a ribonucleoprotein complex called RISC. miRNA component of the RISC complex binds to the complementary sequence of mRNA target depending on the degree of complementarity, and leads to mRNA degradation and/or inhibition of protein synthesis. miRNAs have been found in eukaryotes and some viruses play a role in development, metabolism, cell proliferation, growth, differentiation, and death. OBJECTIVE A large number of miRNAs and their targets were identified by different experimental techniques and computational approaches. The principal aim of this paper is to gather information about some miRNA databases and web-based tools for better and quicker access to relevant data. RESULTS Accordingly, in this paper, we collected and introduced miRNA databases and some webbased tools that have been developed by various research groups. We have categorized them into different classes including databases for viral miRNAs, and plant miRNAs, miRNAs in human beings, mice and other vertebrates, miRNAs related to human diseases, and target prediction, and miRNA expression. Also, we have presented relevant statistical information about these databases.
Collapse
Affiliation(s)
- Majid Tafrihi
- Molecular & Cell Biology Research Lab. 2, Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Elham Hasheminasab
- Molecular & Cell Biology Research Lab. 2, Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| |
Collapse
|
12
|
Ziebarth JD, Bhattacharya A, Cui Y. Functional Analysis of Genetic Variants and Somatic Mutations Impacting MicroRNA-Target Recognition: Bioinformatics Resources. Methods Mol Biol 2019; 1970:101-120. [PMID: 30963491 DOI: 10.1007/978-1-4939-9207-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs are small noncoding RNA molecules with great importance in regulating a large number of diverse biological processes in health and disease. MicroRNAs can bind to both coding and noncoding RNAs and regulate their stability and expression. Genetic variants and somatic mutations may alter microRNA sequences and their target sites and therefore impact microRNA-target recognition. Aberrant microRNA-target interactions have been associated with many diseases. In recent years, computational resources have been developed for retrieving, annotating, and analyzing the impact of mutations on microRNA-target recognition. In this chapter, we provide an overview on the computational analysis of mutations impacting microRNA target recognition, followed by a detailed tutorial on how to use three major Web-based bioinformatics resources: PolymiRTS ( http://compbio.uthsc.edu/miRSNP ), a database of genetic variants impacting microRNA target recognition; SomamiR ( http://compbio.uthsc.edu/SomamiR ), a database of somatic mutations affecting the interactions between microRNAs and their targets in mRNAs and noncoding RNAs; and miR2GO ( http://compbio.uthsc.edu/miR2GO ), a computational tool for knowledge-based functional analysis of genetic variants and somatic mutations in microRNA seed regions.
Collapse
Affiliation(s)
- Jesse D Ziebarth
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anindya Bhattacharya
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA.
| | - Yan Cui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
13
|
Abstract
microRNA molecules have been shown to play various significant roles in many physiological and pathophysiological processes in living organisms. The tremendous interest in these molecules has led to the significant development and constant release of a number of computational tools useful for basic as well as advanced miRNA-related analyses. These approaches have various constantly evolving utilities, such as detection, target prediction, functional annotation, and many others. In this chapter, we provide an overview of several computational tools useful for broadly defined plant miRNA analysis.
Collapse
Affiliation(s)
- Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
14
|
Lin H, Zhou AJ, Zhang JY, Liu SF, Gu JX. MiR-324-5p reduces viability and induces apoptosis in gastric cancer cells through modulating TSPAN8. J Pharm Pharmacol 2018; 70:1513-1520. [PMID: 30159900 DOI: 10.1111/jphp.12995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The purpose of this study was to further clarify the role and underlying mechanism of miR-324-5p in gastric cancer. METHODS The expressions of miR-324-5p and TSPAN8 as determined by qRT-PCR or Western blot were compared between the gastric cancer tissues and normal tissues. Human gastric cancer cell line SGC-7901 was cultured and transfected with miR-324-5p mimic/inhibitor or pcDNA-TSPAN8. The cell survival was assessed by the cell viability and apoptosis. Luciferase reporter gene assays were performed to explore the interaction between miR-324-5p and TSPAN8 in SGC-7901 cells. KEY FINDINGS MiR-324-5p was decreased in human gastric carcinoma tissues (n = 33), but TSPAN8 protein expression was increased in the gastric carcinoma tissues (n = 33). Moreover, miR-324-5p inhibited the viability and induced the apoptosis of gastric cancer cells in vitro. TSPAN8 is a functional target of miR-324-5p in gastric cancer. MiR-324-5p was further confirmed to reduce gastric cancer cell viability and induce apoptosis via downregulating TSPAN8 in SGC-7901 cells in vitro. Additionally, miR-324-5p overexpression markedly inhibited the tumorigenesis of gastric cancer cells in vivo, as shown by the smaller tumour volume compared with the control. CONCLUSIONS This study suggested a novel, probable mechanism of miR-324-5p in gastric cancer context and revealed that miR-324-5p inhibited gastric cancer cell survival by targeting TSPAN8.
Collapse
Affiliation(s)
- Hai Lin
- Department of Gastroenterology, Linyi Central Hospital, Linyi, Shandong, China
| | - Ai-Jun Zhou
- Department of Digestive Medicine, Lianshui County People's Hospital, Huai'an, Jiangsu, China
| | - Jing-Yu Zhang
- The Internal Medicine Department, Jiangpu District Health Center of Huai'an, Huai'an, Jiangsu, China
| | - Shu-Fang Liu
- Laboratory Department, Linyi Central Hospital, Linyi, Shandong, China
| | - Jian-Xiang Gu
- Department of Digestive Medicine, The Second People's Hospital of Huai'an, The Huai'an Affiliated Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
15
|
Sheervalilou R, Shirvaliloo S, Fekri Aval S, Khamaneh AM, Sharifi A, Ansarin K, Zarghami N. A new insight on reciprocal relationship between microRNA expression and epigenetic modifications in human lung cancer. Tumour Biol 2017; 39:1010428317695032. [PMID: 28468581 DOI: 10.1177/1010428317695032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lung cancer stands among the leading causes of cancer-related death in the world. Although the molecular network implicated in lung cancer development is extensively revealed, the mortality rate is only slightly improved. MicroRNAs are small, endogenous single-stranded evolutionary conserved non-coding RNAs which involve in a wide variety of biological processes including cell growth, proliferation, metabolism, and differentiation. MicroRNAs, as novel biomarkers, have multiple functions in normal lung tissue development, and aberrant expression profiles of certain microRNAs could induce lung tumorigenesis. Similar to that of protein-coding genes, microRNA expression and function are regulated by multiple factors as well as the epigenetic network including DNA methylation and histone modification mechanisms. Furthermore, microRNAs can themselves regulate key enzymes which drive epigenetic modifications and have a pivotal effect on the cell biology. In this review, we will look into the regulatory loop linkage between microRNA expression and epigenetic modifications, and then, we will discuss the effects of epigenetics on the miRNome, as well as the role of epi-microRNAs in controlling the epigenome in human lung cancer. Better knowledge of reciprocal connection between microRNAs and epigenome will help to develop novel microRNA-orientated diagnostic, prognostic and therapeutic strategies related to human lung cancer in future.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- 1 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakine Shirvaliloo
- 4 Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Fekri Aval
- 2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,5 Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mahdi Khamaneh
- 1 Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Sharifi
- 2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- 2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- 2 Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,5 Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Abstract
microRNAs (miRNAs) are a broad group of endogenous small non-coding molecules that reduce the transcription of mRNA and play a key role in post-transcriptional gene processes. miRNAs are involved in onset and progression of several human disorders such as infectious and immune non-infectious diseases, cancers, metabolic and cardiovascular disorders. They regulate the expression of gene targets (e.g. oncogenes and tumor suppressor genes) and act as gene repressors with mRNA binding and cleavage. The increasing evidence that miRNAs play a key role in the pathogenesis of cardiovascular conditions could radically change the future management approach to these disorders. This review focuses on current knowledge about the influence of miRNAs on cardiovascular disease, with particular regard to common conditions such as atherosclerosis, diabetes and migraine. Key messages miRNAs are a group of endogenous small non-coding RNA segments measuring 19-25 nucleotides that are involved in physiologic processes and onset and progression of disorders such as infectious and immune non-infectious diseases, cancers, metabolic and cardiovascular disorders. miRNAs expression guarantees vascular integrity, by regulating apoptosis, VEGF pathway and VCAM 1 expression (-126), and is involved in atherosclerotic plaque formation process and progression. Hyperglycemia, overt diabetes, and their complications are associated with overexpression of several miRNAs. An altered expression of miRNAs has also been postulated in migraine patients, although only a few preliminary studies have so far been performed with this respect.
Collapse
Affiliation(s)
- Claudio Tana
- a Internal Medicine Unit, Medical Department, Guastalla Hospital, AUSL Reggio Emilia , Italy
| | - Maria Adele Giamberardino
- b Geriatrics Clinic, Department of Medicine and Science of Aging , "G. D'Annunzio" University of Chieti , Italy
| | - Francesco Cipollone
- b Geriatrics Clinic, Department of Medicine and Science of Aging , "G. D'Annunzio" University of Chieti , Italy.,c Geriatrics Clinic and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia, Department of Medicine and Science of Aging, "G. D'Annunzio" University of Chieti , Italy
| |
Collapse
|