1
|
Tasneem A, Singh M, Singh P, Dohare R. Multi-omics and in-silico approach reveals AURKA, AURKB, and RSAD2 as therapeutic biomarkers in OSCC progression. J Biomol Struct Dyn 2024:1-19. [PMID: 39639535 DOI: 10.1080/07391102.2024.2436556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/10/2024] [Indexed: 12/07/2024]
Abstract
Oral squamous cell carcinoma (OSCC), a prevalent form of head and neck cancer, poses a significant health challenge with limited improvements in patient outcomes over the years. Its development is influenced by a complex interplay of genetic alterations and environmental factors. While progress has been made in understanding the molecular mechanisms driving OSCC, pinpointing critical molecular markers and potential drug candidates has proven elusive. This study uniquely endeavors to conduct a meta-analysis to unveil therapeutic genes responsible for OSCC tumorigenesis. A multi-omics approach identified 951 differentially expressed genes (DEGs) associated with OSCC by analyzing microarray data from the NCBI GEO database. Weighted gene co-expression network analysis (WGCNA) detected a significant hub gene module comprising 805 genes, followed by the construction of protein-protein interaction network resulting in two small clusters of 7 gene-encoded proteins each. These clusters were filtered out based on top 10 significant pathways and gene ontology terms to identify six key target proteins with elevated expression levels, acting as potential therapeutic biomarkers for OSCC. Notably, RSAD2 emerged as a novel biomarker linked to OSCC progression. Furthermore, we identified potential inhibitors targeting AURKA, AURKB, and RSAD2 proteins and validated their interactions through molecular dynamics simulation studies. The simulations confirmed the stability of receptor-ligand complexes, suggesting ZINC03839281, ZINC04026167, and ZINC00718292 compounds hold promise as potential inhibitors for therapeutically targeting AURKA, AURKB, and RSAD2 as significant OSCC biomarkers. We recommend further comprehensive studies, including experimental and preclinical investigations, to validate the effectiveness of these lead compounds for OSCC treatment.
Collapse
Affiliation(s)
- Alvea Tasneem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Manish Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Chinnasamy S, Selvaraj G, Kaushik AC, Kaliamurthi S, Chandrabose S, Singh SK, Thirugnanasambandam R, Gu K, Wei DQ. Molecular docking and molecular dynamics simulation studies to identify potent AURKA inhibitors: assessing the performance of density functional theory, MM-GBSA and mass action kinetics calculations. J Biomol Struct Dyn 2020; 38:4325-4335. [PMID: 31583965 DOI: 10.1080/07391102.2019.1674695] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Sathishkumar Chinnasamy
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou, Henan, China
| | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou, Henan, China
| | - Selvaraj Chandrabose
- Department of Bioinformatics, School of Biological Sciences, Alagappa University, Karaikkudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, School of Biological Sciences, Alagappa University, Karaikkudi, Tamil Nadu, India
| | - Ramanathan Thirugnanasambandam
- Centre of Advanced Study in Marine Biology, Faculty of Marine Science, Annamalai University, Parangipettai, Tamil Nadu, India
| | - Keren Gu
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou, Henan, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Ha Y, Jang M, Lee S, Lee JY, Lee WC, Bae S, Kang J, Han M, Kim Y. Identification of inhibitor binding hotspots in Acinetobacter baumannii β-ketoacyl acyl carrier protein synthase III using molecular dynamics simulation. J Mol Graph Model 2020; 100:107669. [PMID: 32659632 DOI: 10.1016/j.jmgm.2020.107669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 10/23/2022]
Abstract
Acinetobacter baumannii is a gram-negative bacterium that is rapidly developing drug resistance due to the abuse of antibiotics. The emergence of multidrug-resistant A. baumannii has greatly contributed to the urgency of developing new antibiotics. Previously, we had discovered two potent inhibitors of A. baumannii β-ketoacyl acyl carrier protein synthase III (abKAS III), YKab-4 and YKab-6, which showed potent activity against A. baumannii. In addition, we have reported the crystal structure of abKAS III. In the present study, we investigated the binding between abKAS III and its inhibitors by docking simulation. Molecular dynamics (MD) simulations were performed using docked inhibitor models to identify the hotspot residues related to inhibitor binding. The binding free energies estimated using the MD simulations suggest that residues I198 and F260 of abKAS III serve as the inhibitor binding hotspots. I198, found to be responsible for mediating hydrophobic interactions with inhibitors, had the strongest residual binding energy among all abKAS III residues. We modeled glutamine substitutions of residues I198 and F260 and estimated the relative binding energies of the I198Q and F260Q variants. The results confirmed that I198 and F260 are the key inhibitor binding residues. The roles of the key residues in inhibitor binding, i.e. F260 in the α9 helix and the I198 in the β6β7 loop region, were investigated using principal component analysis (PCA). PCA revealed the structural changes resulting from the abKAS III I198Q and F260Q mutations and described the essential dynamics of the α9 helix. In addition, the results suggest that the β6β7 loop region may act as a gate keeper for ligand binding. Hydrophobic interactions involving I198 and F260 in abKAS III appear to be essential for the binding of the inhibitors YKab-4 and YKab-6. In conclusion, this study provides valuable information for the rational design of antibiotics via the inhibition of abKAS III.
Collapse
Affiliation(s)
- Yuna Ha
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Mihee Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Sehan Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Jee-Young Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Woo Cheol Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Seri Bae
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Jihee Kang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Minwoo Han
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea.
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|