1
|
Bhange M, Kothawade S, Telange D, Padwal V. Emerging therapies and innovations in vitiligo management: a comprehensive review. J Immunoassay Immunochem 2025; 46:1-28. [PMID: 39370722 DOI: 10.1080/15321819.2024.2412528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Vitiligo is a common skin disorder where melanocytes, the cells that produce skin pigment, are destroyed by the immune system, leading to white patches on the skin and mucous membranes. This condition affects 0.4% to 2.0% of the global population, with a higher prevalence in females and often beginning in childhood. In India, about 1% of the population is affected, particularly in northern regions, with a higher incidence in females and links to other autoimmune diseases. This review examines recent progress in understanding vitiligo and its treatment. It focuses on the genetic, autoimmune, and environmental factors involved in the disease and highlights new therapies, such as targeted molecular treatments and advanced repigmentation methods. Current research shows that oxidative stress and genetic predispositions contribute to the autoimmune destruction of melanocytes. Novel drug delivery systems, including liposomes, nanoemulsions, and nanostructured lipid carriers, have improved treatment effectiveness. Clinical trials are exploring new treatments like Ruxolitinib cream and melanocyte transplantation, while teledermatology is becoming useful for managing patients. Vitiligo also poses a significant economic burden due to its impact on patients' quality of life. Continued research is essential to develop better, more accessible treatments and reduce the economic impact of vitiligo.
Collapse
Affiliation(s)
- Manjusha Bhange
- Department of Pharmaceutics, Datta Meghe College Pharmacy, Datta Meghe Institute of Higher Education and Research, (Deemed to be university), Sawangi (Meghe), Wardha, India
| | - Sachin Kothawade
- Department of Pharmaceutics, SCSSS's Sitabai Thite College of Pharmacy, Shirur, India
| | - Darshan Telange
- Department of Pharmaceutics, Datta Meghe College Pharmacy, Datta Meghe Institute of Higher Education and Research, (Deemed to be university), Sawangi (Meghe), Wardha, India
| | - Vijaya Padwal
- Department of Pharmaceutics, SCSSS's Sitabai Thite College of Pharmacy, Shirur, India
| |
Collapse
|
2
|
Hu W, Wang H, Li K, Lei Z, Xiang F, Li J, Kang X. Identification of active compounds in Vernonia anthelmintica (L.) willd by targeted metabolome MRM and kaempferol promotes HaCaT cell proliferation and reduces oxidative stress. Front Pharmacol 2024; 15:1343306. [PMID: 38659590 PMCID: PMC11041372 DOI: 10.3389/fphar.2024.1343306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Vernonia anthelmintica (L.) Willd. is a traditional treatment for vitiligo in Xinjiang. However, its therapeutic mechanism remains unclear owing to its complex composition and limited research on its chemical profile. Methods: We employed a targeted metabolome approach, combining selective reaction monitoring/multiple response monitoring (SRM/MRM) with high-performance liquid chromatography and MRM mass spectrometry to quantitatively analyze the flavonoid constituents of Vernonia anthelmintica. We also used network pharmacology and molecular docking to identify potential vitiligo-linked compounds and targets of V. anthelmintica seeds. Additionally, we assessed HaCaT cell proliferation by AAPH-induced, alongside changes in SOD activity and MDA content, following treatment with V. anthelmintica components. Finally, flow cytometry was used to detect apoptosis and ROS levels. Results and Discussion: We identified 36 flavonoid compounds in V. anthelmintica seeds, with 14 compounds exhibiting druggability. AKT1, VEGFA, ESR1, PTGS2, and IL2 have been identified as key therapeutic target genes, with PI3K/AKT signaling being an important pathway. Notably, kaempferol, one of the identified compounds, exhibited high expression in network pharmacology analysis. Kaempferol exhibited a strong binding affinity to important targets. Further, kaempferol enhanced HaCaT cell viability, inhibited apoptosis, reduced MDA levels, suppressed ROS activity, and upregulated SOD activity, increase the expression of cellular antioxidant genes, including HO-1, GCLC, GCLM, Nrf2, NQO1 and Keap1, providing significant protection against oxidative stress damage in vitro. Here, we present the first comprehensive study integrating SRM/MRM approaches and network analysis to identify active flavonoid compounds within V. anthelmintica (L.) Willd. Moreover, we revealed that its active ingredient, kaempferol, offers protection against AAPH-induced damage in keratinocytes, highlighting its potential as a clinical resource.
Collapse
Affiliation(s)
- Wen Hu
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Hongjuan Wang
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Kaixiao Li
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Jun Li
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| |
Collapse
|
3
|
Huang Q, Man Y, Li W, Zhou Q, Yuan S, Yap YT, Nayak N, Zhang L, Song S, Dunbar J, Leff T, Yang X, Zhang Z. Inactivation of Cops5 in Smooth Muscle Cells Causes Abnormal Reproductive Hormone Homeostasis and Development in Mice. Endocrinology 2023; 164:bqad062. [PMID: 37067025 PMCID: PMC10164660 DOI: 10.1210/endocr/bqad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
COP9 constitutive photomorphogenic homolog subunit 5 (COPS5), also known as Jab1 or CSN5, has been implicated in a wide variety of cellular and developmental processes. By analyzing male germ cell-specific COPS5-deficient mice, we have demonstrated previously that COPS5 is essential to maintain male germ survival and acrosome biogenesis. To further determine the role of Cops5 in peritubular myoid cells, a smooth muscle lineage surrounding seminiferous tubules, we herein derived mice conditionally deficient for the Cops5 gene in smooth muscle cells using transgenic Myh11-Cre mice. Although these conditional Cops5-deficient mice were born at the expected Mendelian ratio and appeared to be normal within the first week after birth, the homozygous mice started to show growth retardation after 1 week. These mice also exhibited a variety of developmental and reproductive disorders, including failure of development of reproductive organs in both males and females, spermatogenesis defects, and impaired skeletal development and immune functions. Furthermore, conditional Cops5-deficient mice revealed dramatic impairment of the endocrine system associated with testicular functions, including a marked reduction in serum levels of gonadotropins (follicle-stimulating hormone, luteinizing hormone), testosterone, insulin-like growth factor 1, and glucose, but not vasopressin. All homozygous mice died before age 67 days in the study. Collectively, our results provide novel evidence that Cops5 in smooth muscle lineage plays an essential role in postnatal development and reproductive functions.
Collapse
Affiliation(s)
- Qian Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Yonghong Man
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Qi Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Shuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Neha Nayak
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Ling Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Shizheng Song
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Joseph Dunbar
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
| | - Todd Leff
- Department of Pathology, Wayne State University, Detroit, MI 48210, USA
| | - Xu Yang
- Arthroplasty Research Laboratory, Hospital for Special Surgery, New York, NY 10021, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI 48210, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48210, USA
| |
Collapse
|
4
|
Srivastava P, Choudhury A, Talwar M, Mohanty S, Narad P, Sengupta A. VIRdb: a comprehensive database for interactive analysis of genes/proteins involved in the pathogenesis of vitiligo. PeerJ 2020; 8:e9119. [PMID: 32509450 PMCID: PMC7246032 DOI: 10.7717/peerj.9119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/13/2020] [Indexed: 01/04/2023] Open
Abstract
Vitiligo is a chronic asymptomatic disorder affecting melanocytes from the basal layer of the epidermis which leads to a patchy loss of skin color. Even though it is one of the neglected disease conditions, people suffering from vitiligo are more prone to psychological disorders. As of now, various studies have been done in order to project auto-immune implications as the root cause. To understand the complexity of vitiligo, we propose the Vitiligo Information Resource (VIRdb) that integrates both the drug-target and systems approach to produce a comprehensive repository entirely devoted to vitiligo, along with curated information at both protein level and gene level along with potential therapeutics leads. These 25,041 natural compounds are curated from Natural Product Activity and Species Source Database. VIRdb is an attempt to accelerate the drug discovery process and laboratory trials for vitiligo through the computationally derived potential drugs. It is an exhaustive resource consisting of 129 differentially expressed genes, which are validated through gene ontology and pathway enrichment analysis. We also report 22 genes through enrichment analysis which are involved in the regulation of epithelial cell differentiation. At the protein level, 40 curated protein target molecules along with their natural hits that are derived through virtual screening. We also demonstrate the utility of the VIRdb by exploring the Protein-Protein Interaction Network and Gene-Gene Interaction Network of the target proteins and differentially expressed genes. For maintaining the quality and standard of the data in the VIRdb, the gold standard in bioinformatics toolkits like Cytoscape, Schrödinger's GLIDE, along with the server installation of MATLAB, are used for generating results. VIRdb can be accessed through "http://www.vitiligoinfores.com/".
Collapse
Affiliation(s)
| | - Alakto Choudhury
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Mehak Talwar
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Sabyasachi Mohanty
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Priyanka Narad
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| | - Abhishek Sengupta
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, India
| |
Collapse
|
5
|
Rezaei Tavirani M, Rezaei Tavirani S, Zadeh-Esmaeel MM, Ali Ahmadi N. Introducing Critical Pain-related Genes: A System Biology Approach. Basic Clin Neurosci 2020; 10:401-408. [PMID: 32231777 PMCID: PMC7101522 DOI: 10.32598/bcn.9.10.310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/29/2018] [Accepted: 01/10/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction: Pain is valuable in diagnosis and also warning of the patients. Many molecular reagents are introduced which are related to pain. In this research, the pain-related genes are screened to identify the critical ones. Methods: First, the pain-related genes were pulling out from the STRING database, and Cytoscape software was used to make the interactome unit. Then the central genes and their neighbors were analyzed. Finally, the genes were clustered, and the essential genes were introduced. Results: After analyzing 159 genes of the network, FOS, IL6, TNF, TAC1, IL8, and KNG1 were identified as the essential genes. Further analysis revealed that 88 genes are directly connected to the central genes. More resolution led to ignoring TNF and IL8 and considering SCN-alpha and PAICS as additional critical nodes. Conclusion: Six critical genes related to pain were identified. They can be potentially considered as new drug targets. Further investigation is required to introduce the central genes as a pain killer.
Collapse
Affiliation(s)
| | - Sina Rezaei Tavirani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nayeb Ali Ahmadi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Khan A, Rehman Z, Hashmi HF, Khan AA, Junaid M, Sayaf AM, Ali SS, Hassan FU, Heng W, Wei DQ. An Integrated Systems Biology and Network-Based Approaches to Identify Novel Biomarkers in Breast Cancer Cell Lines Using Gene Expression Data. Interdiscip Sci 2020; 12:155-168. [DOI: 10.1007/s12539-020-00360-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
|
7
|
Huang Q, Liu H, Zeng J, Li W, Zhang S, Zhang L, Song S, Zhou T, Sutovsky M, Sutovsky P, Pardi R, Hess RA, Zhang Z. COP9 signalosome complex subunit 5, an IFT20 binding partner, is essential to maintain male germ cell survival and acrosome biogenesis†. Biol Reprod 2020; 102:233-247. [PMID: 31373619 PMCID: PMC7443350 DOI: 10.1093/biolre/ioz154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/10/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Intraflagellar transport protein 20 (IFT20) is essential for spermatogenesis in mice. We discovered that COPS5 was a major binding partner of IFT20. COPS5 is the fifth component of the constitutive photomorphogenic-9 signalosome (COP9), which is involved in protein ubiquitination and degradation. COPS5 is highly abundant in mouse testis. Mice deficiency in COPS5 specifically in male germ cells showed dramatically reduced sperm numbers and were infertile. Testis weight was about one third compared to control adult mice, and germ cells underwent significant apoptosis at a premeiotic stage. Testicular poly (ADP-ribose) polymerase-1, a protein that helps cells to maintain viability, was dramatically decreased, and Caspase-3, a critical executioner of apoptosis, was increased in the mutant mice. Expression level of FANK1, a known COPS5 binding partner, and a key germ cell apoptosis regulator was also reduced. An acrosome marker, lectin PNA, was nearly absent in the few surviving spermatids, and expression level of sperm acrosome associated 1, another acrosomal component was significantly reduced. IFT20 expression level was significantly reduced in the Cops5 knockout mice, and it was no longer present in the acrosome, but remained in the Golgi apparatus of spermatocytes. In the conditional Ift20 mutant mice, COPS5 localization and testicular expression levels were not changed. COP9 has been shown to be involved in multiple signal pathways, particularly functioning as a co-factor for protein ubiquitination. COPS5 is believed to maintain normal spermatogenesis through multiple mechanisms, including maintaining male germ cell survival and acrosome biogenesis, possibly by modulating protein ubiquitination.
Collapse
Affiliation(s)
- Qian Huang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Hong Liu
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zeng
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Shiyang Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Ling Zhang
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shizhen Song
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ting Zhou
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, College of Food, Agriculture and Natural Resources, and Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Peter Sutovsky
- Division of Animal Sciences, College of Food, Agriculture and Natural Resources, and Department of Obstetrics, Gynecology and Women’s Health, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ruggero Pardi
- School of Medicine and Scientific Institute, San Raffaele University, Milan, Italy
| | - Rex A Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics/Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
8
|
Malhotra AG, Singh S, Jha M, Pandey KM. A Parametric Targetability Evaluation Approach for Vitiligo Proteome Extracted through Integration of Gene Ontologies and Protein Interaction Topologies. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1830-1842. [PMID: 29994537 DOI: 10.1109/tcbb.2018.2835459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitiligo is a well-known skin disorder with complex etiology. Vitiligo pathogenesis is multifaceted with many ramifications. A computational systemic path was designed to first propose candidate disease proteins by merging properties from protein interaction networks and gene ontology terms. All in all, 109 proteins were identified and suggested to be involved in the onset of disease or its progression. Later, a composite approach was employed to prioritize vitiligo disease proteins by comparing and benchmarking the properties against standard target identification criteria. This includes sequence-based, structural, functional, essentiality, protein-protein interaction, vulnerability, secretability, assayability, and druggability information. The existing information was seamlessly integrated into efficient pipelines to propose a novel protocol for assessment of targetability of disease proteins. Using the online data resources and the scripting, an illustrative list of 68 potential drug targets was generated for vitiligo. While this list is broadly consistent with the research community's current interest in certain specific proteins, and suggests novel target candidates that may merit further study, it can still be modified to correspond to a user-specific environment, either by adjusting the weights for chosen criteria (i.e., a quantitative approach) or by changing the considered criteria (i.e., a qualitative approach).
Collapse
|
9
|
Yuan X, Meng D, Cao P, Sun L, Pang Y, Li Y, Wang X, Luo Z, Zhang L, Liu G. Identification of pathogenic genes and transcription factors in vitiligo. Dermatol Ther 2019; 32:e13025. [PMID: 31306558 DOI: 10.1111/dth.13025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
Our study aimed to identify the key genes and upstream regulators in vitiligo. To screen the pathogenic genes of vitiligo, an integrated analysis was performed by using the microarray datasets in vitiligo derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We constructed a vitiligo-specific transcriptional regulatory network to identify crucial transcriptional factors that target the DEGs in vitiligo. From two GEO datasets, we identified 1863 DEGs (744 downregulated DEGs and 1,119 upregulated DEGs [false discovery rate < 0.05, |Combined.ES| > 1]) between lesional tissues and nonlesional tissues. GO and KEGG analyses revealed that ubiquitin-mediated proteolysis and the endoplasmic reticulum were significantly enriched pathways for DEGs. The expressions of premelanosome (PMEL), melan-A (MLANA), dopachrome tautomerase (DCT), SRY-boxtranscription factor 10 (SOX10), tyrosinase-related protein 1 (TYRP1), and melanocortin 1 receptor (MC1R) were shown to be involved in the pathogenesis of vitiligo. We concluded that PMEL, MLANA), DCT, SOX10, TYRP1, and MC1R may play a role in vitiligo, among which TYRP1 and MC1R are regulated by forkhead box J2 (FOXJ2). Our finding may contribute to the development of new potential biomarkers, reveal the underlying pathogenesis of vitiligo, and identify novel therapeutic targets for vitiligo.
Collapse
Affiliation(s)
- Xiangfeng Yuan
- Department of Dermatology, Shandong University, Jinan, Shandong, China.,Department of Dermatology, Weifang Medical University Hospital, Weifang, Shandong, China
| | - Dan Meng
- Weifang Medical University, Weifang, Shandong, China
| | - Peihua Cao
- Department of Dermatology, Weifang Medical University Hospital, Weifang, Shandong, China
| | - Lina Sun
- Department of Dermatology, Weifang Medical University Hospital, Weifang, Shandong, China
| | - Yunyan Pang
- Department of Dermatology, Weifang Medical University Hospital, Weifang, Shandong, China
| | - Yuan Li
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xing Wang
- Department of Dermatology, Weifang Medical University Hospital, Weifang, Shandong, China
| | - Zengxiang Luo
- Department of Dermatology, Weifang Medical University Hospital, Weifang, Shandong, China
| | - Li Zhang
- Department of Dermatology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Guoyan Liu
- Department of Dermatology, Weifang Medical University Hospital, Weifang, Shandong, China
| |
Collapse
|