1
|
Lin M, Guo J, Gu Z, Tang W, Tao H, You S, Jia D, Sun Y, Jia P. Machine learning and multi-omics integration: advancing cardiovascular translational research and clinical practice. J Transl Med 2025; 23:388. [PMID: 40176068 PMCID: PMC11966820 DOI: 10.1186/s12967-025-06425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
The global burden of cardiovascular diseases continues to rise, making their prevention, diagnosis and treatment increasingly critical. With advancements and breakthroughs in omics technologies such as high-throughput sequencing, multi-omics approaches can offer a closer reflection of the complex physiological and pathological changes in the body from a molecular perspective, providing new microscopic insights into cardiovascular diseases research. However, due to the vast volume and complexity of data, accurately describing, utilising, and translating these biomedical data demands substantial effort. Researchers and clinicians are actively developing artificial intelligence (AI) methods for data-driven knowledge discovery and causal inference using various omics data. These AI approaches, integrated with multi-omics research, have shown promising outcomes in cardiovascular studies. In this review, we outline the methods for integrating machine learning, one of the most successful applications of AI, with omics data and summarise representative AI models developed that leverage various omics data to facilitate the exploration of cardiovascular diseases from underlying mechanisms to clinical practice. Particular emphasis is placed on the effectiveness of using AI to extract potential molecular information to address current knowledge gaps. We discuss the challenges and opportunities of integrating omics with AI into routine diagnostic and therapeutic practices and anticipate the future development of novel AI models for wider application in the field of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingzhi Lin
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Jiuqi Guo
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Zhilin Gu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Wenyi Tang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Hongqian Tao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Shilong You
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Dalin Jia
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China.
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China.
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
2
|
Asim MN, Asif T, Mehmood F, Dengel A. Peptide classification landscape: An in-depth systematic literature review on peptide types, databases, datasets, predictors architectures and performance. Comput Biol Med 2025; 188:109821. [PMID: 39987697 DOI: 10.1016/j.compbiomed.2025.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Peptides are gaining significant attention in diverse fields such as the pharmaceutical market has seen a steady rise in peptide-based therapeutics over the past six decades. Peptides have been utilized in the development of distinct applications including inhibitors of SARS-COV-2 and treatments for conditions like cancer and diabetes. Distinct types of peptides possess unique characteristics, and development of peptide-specific applications require the discrimination of one peptide type from others. To the best of our knowledge, approximately 230 Artificial Intelligence (AI) driven applications have been developed for 22 distinct types of peptides, yet there remains significant room for development of new predictors. A Comprehensive review addresses the critical gap by providing a consolidated platform for the development of AI-driven peptide classification applications. This paper offers several key contributions, including presenting the biological foundations of 22 unique peptide types and categorizes them into four main classes: Regulatory, Therapeutic, Nutritional, and Delivery Peptides. It offers an in-depth overview of 47 databases that have been used to develop peptide classification benchmark datasets. It summarizes details of 288 benchmark datasets that are used in development of diverse types AI-driven peptide classification applications. It provides a detailed summary of 197 sequence representation learning methods and 94 classifiers that have been used to develop 230 distinct AI-driven peptide classification applications. Across 22 distinct types peptide classification tasks related to 288 benchmark datasets, it demonstrates performance values of 230 AI-driven peptide classification applications. It summarizes experimental settings and various evaluation measures that have been employed to assess the performance of AI-driven peptide classification applications. The primary focus of this manuscript is to consolidate scattered information into a single comprehensive platform. This resource will greatly assist researchers who are interested in developing new AI-driven peptide classification applications.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany.
| | - Tayyaba Asif
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
| | - Faiza Mehmood
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Institute of Data Sciences, University of Engineering and Technology, Lahore, Pakistan
| | - Andreas Dengel
- German Research Center for Artificial Intelligence, Kaiserslautern, 67663, Germany; Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany; Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| |
Collapse
|
3
|
Wei Z, Shen Y, Tang X, Wen J, Song Y, Wei M, Cheng J, Zhu X. AVPpred-BWR: antiviral peptides prediction via biological words representation. Bioinformatics 2025; 41:btaf126. [PMID: 40152250 PMCID: PMC11968319 DOI: 10.1093/bioinformatics/btaf126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/17/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025] Open
Abstract
MOTIVATION Antiviral peptides (AVPs) are short chains of amino acids, showing great potential as antiviral drugs. The traditional wisdom (e.g. wet experiments) for identifying the AVPs is time-consuming and laborious, while cutting-edge computational methods are less accurate to predict them. RESULTS In this article, we propose an AVPs prediction model via biological words representation, dubbed AVPpred-BWR. Based on the fact that the secondary structures of AVPs mainly consist of α-helix and loop, we explore the biological words of 1mer (corresponding to loops) and 4mer (4 continuous residues, corresponding to α-helix). That is, the peptides sequences are decomposed into biological words, and then the concealed sequential information is represented by training the Word2Vec models. Moreover, in order to extract multi-scale features, we leverage a CNN-Transformer framework to process the embeddings of 1mer and 4mer generated by Word2Vec models. To the best of our knowledge, this is the first time to realize the word segmentation of protein primary structure sequences based on the regularity of protein secondary structure. AVPpred-BWR illustrates clear improvements over its competitors on the independent test set (e.g. improvements of 4.6% and 11.0% for AUROC and MCC, respectively, compared to UniDL4BioPep). AVAILABILITY AND IMPLEMENTATION AVPpred-BWR is publicly available at: https://github.com/zyweizm/AVPpred-BWR or https://zenodo.org/records/14880447 (doi: 10.5281/zenodo.14880447).
Collapse
Affiliation(s)
- Zhuoyu Wei
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongqi Shen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiang Tang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Wen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Youyi Song
- School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Mingqiang Wei
- School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Cheng
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolei Zhu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
4
|
Charoenkwan P, Chumnanpuen P, Schaduangrat N, Shoombuatong W. Deepstack-ACE: A deep stacking-based ensemble learning framework for the accelerated discovery of ACE inhibitory peptides. Methods 2025; 234:131-140. [PMID: 39709069 DOI: 10.1016/j.ymeth.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024] Open
Abstract
Identifying angiotensin-I-converting enzyme (ACE) inhibitory peptides accurately is crucial for understanding the primary factor that regulates the renin-angiotensin system and for providing guidance in developing new potential drugs. Given the inherent experimental complexities, using computational methods for in silico peptide identification could be indispensable for facilitating the high-throughput characterization of ACE inhibitory peptides. In this paper, we propose a novel deep stacking-based ensemble learning framework, termed Deepstack-ACE, to precisely identify ACE inhibitory peptides. In Deepstack-ACE, the input peptide sequences are fed into the word2vec embedding technique to generate sequence representations. Then, these representations were employed to train five powerful deep learning methods, including long short-term memory, convolutional neural network, multi-layer perceptron, gated recurrent unit network, and recurrent neural network, for the construction of base-classifiers. Finally, the optimized stacked model was constructed based on the best combination of selected base-classifiers. Benchmarking experiments showed that Deepstack-ACE attained a more accurate and robust identification of ACE inhibitory peptides compared to its base-classifiers and several conventional machine learning classifiers. Remarkably, in the independent test, our proposed model significantly outperformed the current state-of-the-art methods, with a balanced accuracy of 0.916, sensitivity of 0.911, and Matthews correlation coefficient scores of 0.826. Moreover, we developed a user-friendly web server for Deepstack-ACE, which is freely available at https://pmlabqsar.pythonanywhere.com/Deepstack-ACE. We anticipate that our proposed Deepstack-ACE model can provide a faster and reasonably accurate identification of ACE inhibitory peptides.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Kasetsart University International College (KUIC), Kasetsart University, Bangkok 10900, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
5
|
Liang Y, Ma X, Li J, Zhang S. iACVP-MR: Accurate Identification of Anti-coronavirus Peptide based on Multiple Features Information and Recurrent Neural Network. Curr Med Chem 2025; 32:2055-2067. [PMID: 38549527 DOI: 10.2174/0109298673277663240101111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 05/14/2024]
Abstract
BACKGROUND Over the years, viruses have caused human illness and threatened human health. Therefore, it is pressing to develop anti-coronavirus infection drugs with clear function, low cost, and high safety. Anti-coronavirus peptide (ACVP) is a key therapeutic agent against coronavirus. Traditional methods for finding ACVP need a great deal of money and man power. Hence, it is a significant task to establish intelligent computational tools to able rapid, efficient and accurate identification of ACVP. METHODS In this paper, we construct an excellent model named iACVP-MR to identify ACVP based on multiple features and recurrent neural networks. Multiple features are extracted by using reduced amino acid component and dipeptide component, compositions of k-spaced amino acid pairs, BLOSUM62 encoder according to the N5C5 sequence, as well as second-order moving average approach based on 16 physicochemical properties. Then, two recurrent neural networks named long-short term memory (LSTM) and bidirectional gated recurrent unit (BiGRU) combined attention mechanism are used for feature fusion and classification, respectively. RESULTS The accuracies of ENNAVIA-C and ENNAVIA-D datasets under the 10-fold cross-validation are 99.15% and 98.92%, respectively, and other evaluation indexes have also obtained satisfactory results. The experimental results show that our model is superior to other existing models. CONCLUSION The iACVP-MR model can be viewed as a powerful and intelligent tool for the accurate identification of ACVP. The datasets and source codes for iACVP-MR are freely downloaded at https://github.com/yunyunliang88/iACVP-MR.
Collapse
Affiliation(s)
- Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P.R. China
| | - Xinyan Ma
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P.R. China
| | - Jin Li
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P.R. China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, P.R. China
| |
Collapse
|
6
|
Zhang S, Jing Y, Liang Y. EACVP: An ESM-2 LM Framework Combined CNN and CBAM Attention to Predict Anti-coronavirus Peptides. Curr Med Chem 2025; 32:2040-2054. [PMID: 38494930 DOI: 10.2174/0109298673287899240303164403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The novel coronavirus pneumonia (COVID-19) outbreak in late 2019 killed millions worldwide. Coronaviruses cause diseases such as severe acute respiratory syndrome (SARS-CoV) and SARS-CoV-2. Many peptides in the host defense system have antiviral activity. How to establish a set of efficient models to identify anti-coronavirus peptides is a meaningful study. METHODS Given this, a new prediction model EACVP is proposed. This model uses the evolutionary scale language model (ESM-2 LM) to characterize peptide sequence information. The ESM model is a natural language processing model trained by machine learning technology. It is trained on a highly diverse and dense dataset (UR50/D 2021_04) and uses the pre-trained language model to obtain peptide sequence features with 320 dimensions. Compared with traditional feature extraction methods, the information represented by ESM-2 LM is more comprehensive and stable. Then, the features are input into the convolutional neural network (CNN), and the convolutional block attention module (CBAM) lightweight attention module is used to perform attention operations on CNN in space dimension and channel dimension. To verify the rationality of the model structure, we performed ablation experiments on the benchmark and independent test datasets. We compared the EACVP with existing methods on the independent test dataset. RESULTS Experimental results show that ACC, F1-score, and MCC are 3.95%, 35.65% and 0.0725 higher than the most advanced methods, respectively. At the same time, we tested EACVP on ENNAVIA-C and ENNAVIA-D data sets, and the results showed that EACVP has good migration and is a powerful tool for predicting anti-coronavirus peptides. CONCLUSION The results prove that this model EACVP could fully characterize the peptide information and achieve high prediction accuracy. It can be generalized to different data sets. The data and code of the article have been uploaded to https://github.- com/JYY625/EACVP.git.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, P.R. China
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, 571158, P.R. China
| | - Yuanyuan Jing
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, P.R. China
| | - Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P.R. China
| |
Collapse
|
7
|
Ge F, Li HY, Zhang M, Arif M, Alam T. TCellPredX: A Novel Approach for Accurate Prediction of Hepatitis C Virus Linear T Cell Epitopes. ACS OMEGA 2024; 9:51494-51507. [PMID: 39758636 PMCID: PMC11696426 DOI: 10.1021/acsomega.4c08715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
Hepatitis C Virus (HCV) is a bloodborne RNA virus that leads to severe liver diseases, and currently, no effective prophylactic biologics are available to prevent its transmission. The prevention of HCV is closely related to the major histocompatibility complex (MHC). Linear antigenic peptides of HCV, known as T cell epitopes (TCEs), are crucial in the presentation process by MHC molecules to T cells, playing a key role in immune responses. Therefore, the rapid and accurate identification of these TCE-HCVs is essential for advancing vaccine development. Herein, we propose TCellPredX, a novel integrated predictor for TCE-HCV identification. TCellPredX leverages five distinct feature encoding schemes, including local and global sequence encodings, composition-transition-distribution descriptors, physicochemical properties, and embeddings from two protein language models, which are processed through 12 machine learning algorithms. Our results indicate that feature fusion significantly enhances predictive accuracy. Moreover, the maximal relevance minimal redundancy feature selection method is particularly effective in isolating informative features, ensuring the model's use of the most informative data. Additionally, ensemble models, especially when combined with an averaged voting strategy, demonstrate superior stability and accuracy compared to individual classifiers, effectively reducing noise and enhancing model robustness. TCellPredX achieves notable accuracies of 0.900 and 0.897 in 10-fold cross-validation and independent test, respectively. Furthermore, TCellPredX's high accuracy is validated on experimentally verified peptide sequences documented for their potential benefits in vaccine development. Overall, TCellPredX can offer a robust tool for the precise identification of TCE-HCV, potentially serving as a cornerstone for future epitope research and advancing HCV vaccines development.
Collapse
Affiliation(s)
- Fang Ge
- State
Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University
of Posts and Telecommunications, 6 Wenyuan Road, Nanjing 210023, China
| | - Hao-Yang Li
- School
of Computer, Jiangsu University of Science
and Technology, 666 Changhui Road, Zhenjiang 212100, China
| | - Ming Zhang
- School
of Computer, Jiangsu University of Science
and Technology, 666 Changhui Road, Zhenjiang 212100, China
| | - Muhammad Arif
- College
of Science and Engineering, Hamad Bin Khalifa
University, Doha 34110, Qatar
| | - Tanvir Alam
- College
of Science and Engineering, Hamad Bin Khalifa
University, Doha 34110, Qatar
| |
Collapse
|
8
|
Liang Y, Cao M, Zhang S. NeuroPred-ResSE: Predicting neuropeptides by integrating residual block and squeeze-excitation attention mechanism. Anal Biochem 2024; 695:115648. [PMID: 39154878 DOI: 10.1016/j.ab.2024.115648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Neuropeptides play crucial roles in regulating neurological function acting as signaling molecules, which provide new opportunity for developing drugs for the treatment of neurological diseases. Therefore, it is very necessary to develop a rapid and accurate prediction model for neuropeptides. Although a few prediction tools have been developed, there is room for improvement in prediction accuracy by using deep learning approach. In this paper, we establish the NeuroPred-ResSE model based on residual block and squeeze-excitation attention mechanism. Firstly, we extract multi-features by using one-hot coding based on the NT5CT5 sequence, dipeptide deviation from expected mean and natural vector. Then, we integrate residual block and squeeze-excitation attention mechanism, which can capture and identify the most relevant attribute features. Finally, the accuracies of the training set and test set are 97.16 % and 96.60 % based on the 5-fold cross-validation and independent test, respectively, and other evaluation metrics have also obtained satisfactory results. The experimental results show that the performance of the NeuroPred-ResSE model outperforms those of existing state-of-the-art models, and our model is an effective, intelligent and robust prediction tool. The datasets and source codes are available at https://github.com/yunyunliang88/NeuroPred-ResSE.
Collapse
Affiliation(s)
- Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, PR China.
| | - Mengyi Cao
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
| |
Collapse
|
9
|
Zuo Y, Wan M, Shen Y, Wang X, He W, Bi Y, Liu X, Deng Z. ILYCROsite: Identification of lysine crotonylation sites based on FCM-GRNN undersampling technique. Comput Biol Chem 2024; 113:108212. [PMID: 39277959 DOI: 10.1016/j.compbiolchem.2024.108212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Protein lysine crotonylation is an important post-translational modification that regulates various cellular activities. For example, histone crotonylation affects chromatin structure and promotes histone replacement. Identification and understanding of lysine crotonylation sites is crucial in the field of protein research. However, due to the increasing amount of non-histone crotonylation sites, existing classifiers based on traditional machine learning may encounter performance limitations. In order to address this problem, a novel deep learning-based model for identifying crotonylation sites is presented in this study, given the unique advantages of deep learning techniques for sequence data analysis. In this study, an MLP-Attention-based model was developed for the identification of crotonylation sites. Firstly, three feature extraction strategies, namely Amino Acid Composition, K-mer, and Distance-based residue features extraction strategy, were used to encode crotonylated and non-crotonylated sequences. Then, in order to balance the training dataset, the FCM-GRNN undersampling algorithm combining fuzzy clustering and generalized neural network approaches was introduced. Finally, to improve the effectiveness of crotonylation site identification, we explored various classification algorithms, and based on the relevant experimental performance comparisons, the multilayer perceptron (MLP) combined with the superimposed self-attention mechanism was finally selected to construct the prediction model ILYCROsite. The results obtained from independent testing and five-fold cross-validation demonstrated that the model proposed in this study, ILYCROsite, had excellent performance. Notably, on the independent test set, ILYCROsite achieves an AUC value of 87.93 %, which is significantly better than the existing state-of-the-art models. In addition, SHAP (Shapley Additive exPlanations) values were used to analyze the importance of features and their impact on model predictions. Meanwhile, in order to facilitate researchers to use the prediction model constructed in this study, we developed a prediction program to identify the crotonylation sites in a given protein sequence. The data and code for this program are available at: https://github.com/wmqskr/ILYCROsite.
Collapse
Affiliation(s)
- Yun Zuo
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214000, China.
| | - Minquan Wan
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214000, China
| | - Yang Shen
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214000, China
| | - Xinheng Wang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214000, China
| | - Wenying He
- School of Artificial Intelligence, Hebei University of Technology, Tianjin 300130, China
| | - Yue Bi
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash University, Australia
| | - Xiangrong Liu
- Department of Computer Science and Technology, National Institute for Data Science in Health and Medicine, Xiamen Key Laboratory of Intelligent Storage and Computing, Xiamen University, Xiamen 361005, China
| | - Zhaohong Deng
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
10
|
Yang S, Ni J, Xu P. AI4ACEIP: A Computing Tool to Identify Food Peptides with High Inhibitory Activity for ACE by Merged Molecular Representation and Rich Intrinsic Sequence Information Based on an Ensemble Learning Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25340-25356. [PMID: 39495772 DOI: 10.1021/acs.jafc.4c05650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Hypertension is a common chronic disorder and a major risk factor for cardiovascular diseases. Angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II, causing vasoconstriction and raising blood pressure. Pharmacotherapy is the mainstay of traditional hypertension treatment, leading to various negative side effects. Some food-derived peptides can suppress ACE, named ACEIP with fewer undesirable effects. Therefore, it is crucial to seek strong dietary ACEIP to aid in hypertension treatment. In this article, we propose a new model called AI4ACEIP to identify ACEIP. AI4ACEIP uses a novel two-layer stacked ensemble architecture to predict ACEIP relying on integrated view features derived from sequence, large language models, and molecular-based information. The analysis of feature combinations reveals that four selected integrated feature pairs exhibit enhancing performance for identifying ACEIP. For finding meta models with strong abilities to learn information from integrated feature pairs, PowerShap, a feature selection method, is used to select 40 optimal feature and meta model combinations. Compared with seven state-of-the-art methods on the source and clear benchmark data sets, AI4ACEIP significantly outperformed by 8.47 to 20.65% and 5.49 to 14.42% for Matthew's correlation coefficient. In brief, AI4ACEIP is a reliable model for ACEIP prediction and is freely available at https://github.com/abcair/AI4ACEIP.
Collapse
Affiliation(s)
- Sen Yang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Jiaqi Ni
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China
| | - Piao Xu
- College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Zhao Y, Zhang S, Liang Y. HemoFuse: multi-feature fusion based on multi-head cross-attention for identification of hemolytic peptides. Sci Rep 2024; 14:22518. [PMID: 39342017 PMCID: PMC11438874 DOI: 10.1038/s41598-024-74326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Hemolytic peptides are therapeutic peptides that damage red blood cells. However, therapeutic peptides used in medical treatment must exhibit low toxicity to red blood cells to achieve the desired therapeutic effect. Therefore, accurate prediction of the hemolytic activity of therapeutic peptides is essential for the development of peptide therapies. In this study, a multi-feature cross-fusion model, HemoFuse, for hemolytic peptide identification is proposed. The feature vectors of peptide sequences are transformed by word embedding technique and four hand-crafted feature extraction methods. We apply multi-head cross-attention mechanism to hemolytic peptide identification for the first time. It captures the interaction between word embedding features and hand-crafted features by calculating the attention of all positions in them, so that multiple features can be deeply fused. Moreover, we visualize the features obtained by this module to enhance its interpretability. On the comprehensive integrated dataset, HemoFuse achieves ideal results, with ACC, SP, SN, MCC, F1, AUC, and AP of 0.7575, 0.8814, 0.5793, 0.4909, 0.6620, 0.8387, and 0.7118, respectively. Compared with HemoDL proposed by Yang et al., it is 3.32%, 3.89%, 5.93%, 10.6%, 8.17%, 5.88%, and 2.72% higher. Other ablation experiments also prove that our model is reasonable and efficient. The codes and datasets are accessible at https://github.com/z11code/Hemo .
Collapse
Affiliation(s)
- Ya Zhao
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, P. R. China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, P. R. China.
| | - Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| |
Collapse
|
12
|
Guo X, Zhao X, Lu X, Zhao L, Zeng Q, Chen F, Zhang Z, Xu M, Feng S, Fan T, Wei W, Zhang X, Pang J, You X, Song D, Wang Y, Jiang J. A deep learning-driven discovery of berberine derivatives as novel antibacterial against multidrug-resistant Helicobacter pylori. Signal Transduct Target Ther 2024; 9:183. [PMID: 38972904 PMCID: PMC11228022 DOI: 10.1038/s41392-024-01895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024] Open
Abstract
Helicobacter pylori (H. pylori) is currently recognized as the primary carcinogenic pathogen associated with gastric tumorigenesis, and its high prevalence and resistance make it difficult to tackle. A graph neural network-based deep learning model, employing different training sets of 13,638 molecules for pre-training and fine-tuning, was aided in predicting and exploring novel molecules against H. pylori. A positively predicted novel berberine derivative 8 with 3,13-disubstituted alkene exhibited a potency against all tested drug-susceptible and resistant H. pylori strains with minimum inhibitory concentrations (MICs) of 0.25-0.5 μg/mL. Pharmacokinetic studies demonstrated an ideal gastric retention of 8, with the stomach concentration significantly higher than its MIC at 24 h post dose. Oral administration of 8 and omeprazole (OPZ) showed a comparable gastric bacterial reduction (2.2-log reduction) to the triple-therapy, namely OPZ + amoxicillin (AMX) + clarithromycin (CLA) without obvious disturbance on the intestinal flora. A combination of OPZ, AMX, CLA, and 8 could further decrease the bacteria load (2.8-log reduction). More importantly, the mono-therapy of 8 exhibited comparable eradication to both triple-therapy (OPZ + AMX + CLA) and quadruple-therapy (OPZ + AMX + CLA + bismuth citrate) groups. SecA and BamD, playing a major role in outer membrane protein (OMP) transport and assembling, were identified and verified as the direct targets of 8 by employing the chemoproteomics technique. In summary, by targeting the relatively conserved OMPs transport and assembling system, 8 has the potential to be developed as a novel anti-H. pylori candidate, especially for the eradication of drug-resistant strains.
Collapse
Affiliation(s)
- Xixi Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xiaosa Zhao
- School of Information Science and Technology, Northeast Normal University, Changchun, 130117, China
| | - Xi Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Liping Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Qingxuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Fenbei Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Zhimeng Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Mengyi Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Shijiao Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Tianyun Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Wei Wei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| | - Xin Zhang
- Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China
| | - Jing Pang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
| | - Yanxiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, Anhui, China.
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, China
| |
Collapse
|
13
|
Ma X, Liang Y, Zhang S. iAVPs-ResBi: Identifying antiviral peptides by using deep residual network and bidirectional gated recurrent unit. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:21563-21587. [PMID: 38124610 DOI: 10.3934/mbe.2023954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Human history is also the history of the fight against viral diseases. From the eradication of viruses to coexistence, advances in biomedicine have led to a more objective understanding of viruses and a corresponding increase in the tools and methods to combat them. More recently, antiviral peptides (AVPs) have been discovered, which due to their superior advantages, have achieved great impact as antiviral drugs. Therefore, it is very necessary to develop a prediction model to accurately identify AVPs. In this paper, we develop the iAVPs-ResBi model using k-spaced amino acid pairs (KSAAP), encoding based on grouped weight (EBGW), enhanced grouped amino acid composition (EGAAC) based on the N5C5 sequence, composition, transition and distribution (CTD) based on physicochemical properties for multi-feature extraction. Then we adopt bidirectional long short-term memory (BiLSTM) to fuse features for obtaining the most differentiated information from multiple original feature sets. Finally, the deep model is built by combining improved residual network and bidirectional gated recurrent unit (BiGRU) to perform classification. The results obtained are better than those of the existing methods, and the accuracies are 95.07, 98.07, 94.29 and 97.50% on the four datasets, which show that iAVPs-ResBi can be used as an effective tool for the identification of antiviral peptides. The datasets and codes are freely available at https://github.com/yunyunliang88/iAVPs-ResBi.
Collapse
Affiliation(s)
- Xinyan Ma
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| |
Collapse
|
14
|
He J, Zhang S, Fang C. AAindex-PPII: Predicting polyproline type II helix structure based on amino acid indexes with an improved BiGRU-TextCNN model. J Bioinform Comput Biol 2023; 21:2350022. [PMID: 37899354 DOI: 10.1142/s0219720023500221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The polyproline-II (PPII) structure domain is crucial in organisms' signal transduction, transcription, cell metabolism, and immune response. It is also a critical structural domain for specific vital disease-associated proteins. Recognizing PPII is essential for understanding protein structure and function. To accurately predict PPII in proteins, we propose a novel method, AAindex-PPII, which only adopts amino acid index to characterize protein sequences and uses a Bidirectional Gated Recurrent Unit (BiGRU)-Improved TextCNN composite deep learning model to predict PPII in proteins. Experimental results show that, when tested on the same datasets, our method outperforms the state-of-the-art BERT-PPII method, achieving an AUC value of 0.845 on the strict data and an AUC value of 0.813 on the non-strict data, which is 0.024 and 0.03 higher than that of the BERT-PPII method. This study demonstrates that our proposed method is simple and efficient for PPII prediction without using pre-trained large models or complex features such as position-specific scoring matrices.
Collapse
Affiliation(s)
- Jiasheng He
- College of Information Engineering, Beijing Institute of Petrochemical Technology, 19 Qingyuan North Road, Daxing District, Beijing 102617, P. R. China
| | - Shun Zhang
- College of Information Engineering, Beijing Institute of Petrochemical Technology, 19 Qingyuan North Road, Daxing District, Beijing 102617, P. R. China
| | - Chun Fang
- College of Information Engineering, Beijing Institute of Petrochemical Technology, 19 Qingyuan North Road, Daxing District, Beijing 102617, P. R. China
| |
Collapse
|
15
|
Jing Y, Zhang S, Wang H. DapNet-HLA: Adaptive dual-attention mechanism network based on deep learning to predict non-classical HLA binding sites. Anal Biochem 2023; 666:115075. [PMID: 36740003 DOI: 10.1016/j.ab.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Human leukocyte antigen (HLA) plays a vital role in immunomodulatory function. Studies have shown that immunotherapy based on non-classical HLA has essential applications in cancer, COVID-19, and allergic diseases. However, there are few deep learning methods to predict non-classical HLA alleles. In this work, an adaptive dual-attention network named DapNet-HLA is established based on existing datasets. Firstly, amino acid sequences are transformed into digital vectors by looking up the table. To overcome the feature sparsity problem caused by unique one-hot encoding, the fused word embedding method is used to map each amino acid to a low-dimensional word vector optimized with the training of the classifier. Then, we use the GCB (group convolution block), SENet attention (squeeze-and-excitation networks), BiLSTM (bidirectional long short-term memory network), and Bahdanau attention mechanism to construct the classifier. The use of SENet can make the weight of the effective feature map high, so that the model can be trained to achieve better results. Attention mechanism is an Encoder-Decoder model used to improve the effectiveness of RNN, LSTM or GRU (gated recurrent neural network). The ablation experiment shows that DapNet-HLA has the best adaptability for five datasets. On the five test datasets, the ACC index and MCC index of DapNet-HLA are 4.89% and 0.0933 higher than the comparison method, respectively. According to the ROC curve and PR curve verified by the 5-fold cross-validation, the AUC value of each fold has a slight fluctuation, which proves the robustness of the DapNet-HLA. The codes and datasets are accessible at https://github.com/JYY625/DapNet-HLA.
Collapse
Affiliation(s)
- Yuanyuan Jing
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China.
| | - Houqiang Wang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
| |
Collapse
|
16
|
Pasca S, Linari S, Tagliaferri A, Santoro C, Zanon E. Very high risk of intracranial hemorrhage and severe outcomes in adult patients with mild hemophilia: Sub-analysis of the EMO.REC Registry. Thromb Res 2023; 221:35-36. [PMID: 36463700 DOI: 10.1016/j.thromres.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Samantha Pasca
- Biomedical Sciences Department (DSB) - Padua University Hospital, Italy; Medicine Department (DIMED) - Padua University Hospital, Italy.
| | - Silvia Linari
- Centre for Bleeding Disorders - Careggi University Hospital of Florence, Italy
| | - Annarita Tagliaferri
- Regional Reference Centre for Inherited Bleeding Disorders, Parma University Hospital, Italy
| | | | - Ezio Zanon
- Hemophilia Center, General Medicine - Padua University Hospital, Italy
| | | |
Collapse
|
17
|
Liang Y, Ma X. iACP-GE: accurate identification of anticancer peptides by using gradient boosting decision tree and extra tree. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:1-19. [PMID: 36562289 DOI: 10.1080/1062936x.2022.2160011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Cancer is one of the main diseases threatening human life, accounting for millions of deaths around the world each year. Traditional physical and chemical methods for cancer treatment are extremely time-consuming, lab-intensive, expensive, inefficient and difficult to be applied in a high-throughput way. Hence, it is an urgent task to develop automated computational methods to enable fast and accurate identification of anticancer peptides (ACPs). In this paper, we develop a novel model named iACP-GE to identify ACPs. Multi-features are extracted by using binary encoding, enhanced grouped amino acid composition and BLOSUM62 encoding based on the N5C5 sequence, as well as detrended forward moving-average auto-cross correlation analysis based on physicochemical properties of 20 natural amino acids. Thus, 835 features are obtained for each sample, in order to avoid information redundancy, gradient boosting decision tree was adopted as the feature selection strategy. Then, the optimal feature subset is input to the extra tree classifier. The accuracies of ACP740 and ACP240 datasets with the 5-fold cross-validation were 90.54% and 91.25%, respectively. Experimental results indicate that iACP-GE significantly outperforms several existing models on ACP740 and ACP240 datasets and can be used as an effective tool for the identification of ACPs. The datasets and source codes for iACP-GE are available at https://github.com/yunyunliang88/iACP-GE.
Collapse
Affiliation(s)
- Y Liang
- School of Science, Xi'an Polytechnic University, Xi'an, P. R. China
| | - X Ma
- School of Science, Xi'an Polytechnic University, Xi'an, P. R. China
| |
Collapse
|
18
|
Li Y, Li X, Liu Y, Yao Y, Huang G. MPMABP: A CNN and Bi-LSTM-Based Method for Predicting Multi-Activities of Bioactive Peptides. Pharmaceuticals (Basel) 2022; 15:707. [PMID: 35745625 PMCID: PMC9231127 DOI: 10.3390/ph15060707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/30/2022] Open
Abstract
Bioactive peptides are typically small functional peptides with 2-20 amino acid residues and play versatile roles in metabolic and biological processes. Bioactive peptides are multi-functional, so it is vastly challenging to accurately detect all their functions simultaneously. We proposed a convolution neural network (CNN) and bi-directional long short-term memory (Bi-LSTM)-based deep learning method (called MPMABP) for recognizing multi-activities of bioactive peptides. The MPMABP stacked five CNNs at different scales, and used the residual network to preserve the information from loss. The empirical results showed that the MPMABP is superior to the state-of-the-art methods. Analysis on the distribution of amino acids indicated that the lysine preferred to appear in the anti-cancer peptide, the leucine in the anti-diabetic peptide, and the proline in the anti-hypertensive peptide. The method and analysis are beneficial to recognize multi-activities of bioactive peptides.
Collapse
Affiliation(s)
- You Li
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| | - Xueyong Li
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| | - Yuewu Liu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China;
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China;
| | - Guohua Huang
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| |
Collapse
|