1
|
Cheng Z, Wang Z, Tang X, Hu X, Yang F, Yan X. A Multi-View Feature-Based Interpretable Deep Learning Framework for Drug-Drug Interaction Prediction. Interdiscip Sci 2025; 17:437-448. [PMID: 39899225 DOI: 10.1007/s12539-025-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Drug-drug interactions (DDIs) can result in deleterious consequences when patients take multiple medications simultaneously, emphasizing the critical need for accurate DDI prediction. Computational methods for DDI prediction have garnered recent attention. However, current approaches concentrate solely on single-view features, such as atomic-view or substructure-view features, limiting predictive capacity. The scarcity of research on interpretability studies based on multi-view features is crucial for tracing interactions. Addressing this gap, we present MI-DDI, a multi-view feature-based interpretable deep learning framework for DDI. To fully extract multi-view features, we employ a Message Passing Neural Network (MPNN) to learn atomic features from molecular graphs generated by RDkit, and transformer encoders are used to learn substructure-view embeddings from drug SMILES simultaneously. These atomic-view and substructure-view features are then amalgamated into a holistic drug embedding matrix. Subsequently, an intricately designed interaction module not only establishes a tractable path for understanding interactions but also directly informs the construction of weight matrices, enabling precise and interpretable interaction predictions. Validation on the BIOSNAP dataset and DrugBank dataset demonstrates MI-DDI's superiority. It surpasses the current benchmarks by a substantial average of 3% on BIOSNAP and 1% on DrugBank. Additional experiments underscore the significance of atomic-view information for DDI prediction and confirm that our interaction module indeed learns more effective information for DDI prediction. The source codes are available at https://github.com/ZihuiCheng/MI-DDI .
Collapse
Affiliation(s)
- Zihui Cheng
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Sunshine Avenue, Wuhan, 430200, China
| | - Zhaojing Wang
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Sunshine Avenue, Wuhan, 430200, China.
- Textile and Fashion, Hubei Provincial Engineering Research Center for Intelligence, Sunshine Avenue, Wuhan, 430200, China.
| | - Xianfang Tang
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Sunshine Avenue, Wuhan, 430200, China
- Textile and Fashion, Hubei Provincial Engineering Research Center for Intelligence, Sunshine Avenue, Wuhan, 430200, China
| | - Xinrong Hu
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Sunshine Avenue, Wuhan, 430200, China
- Textile and Fashion, Hubei Provincial Engineering Research Center for Intelligence, Sunshine Avenue, Wuhan, 430200, China
| | - Fei Yang
- Electronic Information School, Wuhan University, Bayi Road, Wuhan, 430072, China
| | - Xiaoyun Yan
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Sunshine Avenue, Wuhan, 430200, China
- Textile and Fashion, Hubei Provincial Engineering Research Center for Intelligence, Sunshine Avenue, Wuhan, 430200, China
| |
Collapse
|
2
|
Zhang Y, Deng Z, Xu X, Feng Y, Junliang S. Application of Artificial Intelligence in Drug-Drug Interactions Prediction: A Review. J Chem Inf Model 2024; 64:2158-2173. [PMID: 37458400 DOI: 10.1021/acs.jcim.3c00582] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Drug-drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Zengqian Deng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Xiaoyu Xu
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Yinfei Feng
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao,266000,China
| | - Shang Junliang
- School of Information Science and Engineering, Qufu Normal University, Rizhao, 276800, China
| |
Collapse
|
3
|
Jin Q, Xie J, Huang D, Zhao C, He H. MSFF-MA-DDI: Multi-Source Feature Fusion with Multiple Attention blocks for predicting Drug-Drug Interaction events. Comput Biol Chem 2024; 108:108001. [PMID: 38154317 DOI: 10.1016/j.compbiolchem.2023.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
The interaction of multiple drugs could lead to severe events, which cause medical injuries and expenses. Accurate prediction of drug-drug interaction (DDI) events can help clinicians make effective decisions and establish appropriate therapy programs. However, there exist two issues worthy of further consideration. (i) The global features of drug molecules should be paid attention to, rather than just their local characteristics. (ii) The fusion of multi-source features should also be studied to capture the comprehensive features of the drug. This study designs a Multi-Source Feature Fusion framework with Multiple Attention blocks named MSFF-MA-DDI that utilizes multimodal data for DDI event prediction. MSFF-MA-DDI can (i) encode global correlations between long-distance atoms in drug molecular sequences by a self-attention layer based on a position embedding block and (ii) fuse drug sequence features and heterogeneous features (chemical substructure, target, and enzyme) through a multi-head attention block to better represent the features of drugs. Experiments on real-world datasets show that MSFF-MA-DDI can achieve performance that is close to or even better than state-of-the-art models. Especially in cold start scenarios, the model can achieve the best performance. The effectiveness of the model is also supported by the case study on nervous system drugs. The source codes and data are available at https://github.com/BioCenter-SHU/MSFF-MA-DDI.
Collapse
Affiliation(s)
- Qi Jin
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China.
| | - Dingkai Huang
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Chang Zhao
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| | - Hongjian He
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
MSResG: Using GAE and Residual GCN to Predict Drug-Drug Interactions Based on Multi-source Drug Features. Interdiscip Sci 2023; 15:171-188. [PMID: 36646843 DOI: 10.1007/s12539-023-00550-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/18/2023]
Abstract
Drug-drug interaction refers to taking the two drugs may produce certain reaction which may be a threat to patients' health, or enhance the efficacy helpful for medical work. Therefore, it is necessary to study and predict it. In fact, traditional experimental methods can be used for drug-drug interaction prediction, but they are time-consuming and costly, so we prefer to use more accurate and convenient calculation methods to predict the unknown drug-drug interaction. In this paper, we proposed a deep learning framework called MSResG that considers multi-sources features of drugs and combines them with Graph Auto-Encoder to predicting. Firstly, the model obtains four feature representations of drugs from the database, namely, chemical substructure, target, pathway and enzyme, and then calculates the Jaccard similarity of the drugs. To balance different drug features, we perform similarity integration by finding the mean value. Then we will be comprehensive similarity network combined with drug interaction network, and encodes and decodes it using the graph auto-encoder based on residual graph convolution network. Encoding is to learn the potential feature vectors of drugs, which contain similar information and interaction information. Decoding is to reconstruct the network to predict unknown drug-drug interaction. The experimental results show that our model has advanced performance and is superior to other existing advanced methods. Case study also shows that MSResG has practical significance.
Collapse
|