1
|
Ye Y, Xu Y, Ji J, Zhang Y, Feng Y, Sun X. Polysaccharides extracted from Polygonatum sibiricum alleviate intestine-liver-kidney axis injury induced by citrinin and alcohol co-exposure in mice. Food Chem Toxicol 2025; 197:115314. [PMID: 39923830 DOI: 10.1016/j.fct.2025.115314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/26/2024] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Citrinin (Cit) is a metabolite of Monascus Aspergillus that is known to be nephrotoxic and affects the safety of Monascus products. Here, we investigated the effects of an intervention with bioactive Polygonatum sibiricum polysaccharides (PSPS) on Cit-induced toxic damage in populations with dietary patterns characterized by alcohol consumption. Our results showed that the PSPS intervention significantly increased the levels of intestinal Cit and its metabolite M1. Additionally, the PSPS intervention mitigated intestinal damage, as well as liver and kidney stress, and flora disruption induced by combined exposure to Cit and alcohol. It also promoted the recovery of Lactobacillus abundance. However, there was no significant improvement in hippocampal damage. Metabolomics analysis indicated that the PSPS significantly influenced the metabolic pathways involved in energy metabolism in liver and kidney, such as aspartic acid and tyrosine metabolism. Correlation analysis revealed a significant relationship between the reduction of Cit metabolites and the differential metabolites in the liver and kidney. Our results demonstrated that the PSPS intervention showed promise in improving intestinal flora imbalances, enhancing the barrier function against Cit, alleviating intestinal, liver, and kidney damage, and addressing the metabolic disorders along the gut-liver-kidney axis resulting from the co-exposure to Cit and alcohol.
Collapse
Affiliation(s)
- Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Institute of Future Food Technology, JITRI, Yixing, Jiangsu, 214200, PR China
| | - Yida Xu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Institute of Future Food Technology, JITRI, Yixing, Jiangsu, 214200, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yongwei Feng
- Wuxi Food Safety Inspection and Test Center, Wuxi, Jiangsu Province, 214142, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Institute of Future Food Technology, JITRI, Yixing, Jiangsu, 214200, PR China.
| |
Collapse
|
2
|
de Menezes AAPM, Aguiar RPS, Santos JVO, Sarkar C, Islam MT, Braga AL, Hasan MM, da Silva FCC, Sharifi-Rad J, Dey A, Calina D, Melo-Cavalcante AAC, Sousa JMC. Citrinin as a potential anti-cancer therapy: A comprehensive review. Chem Biol Interact 2023:110561. [PMID: 37230156 DOI: 10.1016/j.cbi.2023.110561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Citrinin (CIT) is a polyketide-derived mycotoxin, which is produced by many fungal strains belonging to the gerena Monascus, Aspergillus, and Penicillium. It has been postulated that mycotoxins have several toxic mechanisms and are potentially used as antineoplastic agents. Therefore, the present study carried out a systematic review, including articles from 1978 to 2022, by collecting evidence in experimental studies of CIT antiplorifactive activity in cancer. The Data indicate that CIT intervenes in important mediators and cell signaling pathways, including MAPKs, ERK1/2, JNK, Bcl-2, BAX, caspases 3,6,7 and 9, p53, p21, PARP cleavage, MDA, reactive oxygen species (ROS) and antioxidant defenses (SOD, CAT, GST and GPX). These factors demonstrate the potential antitumor drug CIT in inducing cell death, reducing DNA repair capacity and inducing cytotoxic and genotoxic effects in cancer cells.
Collapse
Affiliation(s)
- Ag-Anne P M de Menezes
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Raí P S Aguiar
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - José V O Santos
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Muhammad T Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Antonio L Braga
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil.
| | - Mohammad M Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.
| | - Felipe C C da Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Ana A C Melo-Cavalcante
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil; Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| | - João M C Sousa
- Laboratory of Genetical Toxicology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64, 049-550, Brazil; Postgraduate Program in Pharmaceutical Science, Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
3
|
Ji H, Zhao L, Lv K, Zhang Y, Gao H, Gong Q, Yu W. Citrinin Is a Potential Quorum Sensing Inhibitor against Pseudomonas aeruginosa. Mar Drugs 2023; 21:md21050296. [PMID: 37233490 DOI: 10.3390/md21050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that infects patients by regulating virulence factors and biofilms through a quorum sensing (QS) system to protect itself from antibiotics and environmental stress. Therefore, the development of quorum sensing inhibitors (QSIs) is expected to become a new strategy for studying drug resistance to P. aeruginosa infections. Marine fungi are valuable resources for screening QSIs. A marine fungus, Penicillium sp. JH1, with anti-QS activity was isolated from the offshore waters of Qingdao (China), and citrinin, a novel QSI, was purified from secondary metabolites of this fungus. Citrinin could significantly inhibit the production of violacein in Chromobacterium violaceum CV12472 and the production of three virulence factors (elastase, rhamnolipid and pyocyanin) in P. aeruginosa PAO1. It could also inhibit the biofilm formation and motility of PAO1. In addition, citrinin downregulated the transcript levels of nine genes (lasI, rhlI, pqsA, lasR, rhlR, pqsR, lasB, rhlA and phzH) associated with QS. Molecular docking results showed that citrinin bound to PqsR and LasR with better affinity than the natural ligands. This study laid a foundation for the further study of the structure optimization and structure-activity relationship of citrinin.
Collapse
Affiliation(s)
- Hongrui Ji
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lu Zhao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kaiwen Lv
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuzhu Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Haibo Gao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
4
|
Islam MT, Mishra SK, Tripathi S, de Alencar MVOB, e Sousa JMDC, Rolim HML, de Medeiros MDGF, Ferreira PMP, Rouf R, Uddin SJ, Mubarak MS, Melo-Cavalcante AADC. Mycotoxin-assisted mitochondrial dysfunction and cytotoxicity: Unexploited tools against proliferative disorders. IUBMB Life 2018; 70:1084-1092. [DOI: 10.1002/iub.1932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory; School of Biological Sciences (Zoology), Dr. Harisingh Gour Central University; Sagar 470003 Madhya Pradesh India
| | - Swati Tripathi
- Amity Institute of Microbial Technology; Amity University; Noida 201313 Uttar Pradesh India
| | | | - João Marcelo de Castro e Sousa
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí 64 067-670 Brazil
| | - Hercília Maria Lins Rolim
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
| | - Maria das Graças Freire de Medeiros
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City 700000 Vietnam
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí 64 067-670 Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piaui; Teresina 64 049-550 Brazil
- Department of Biophysics and Physiology; Laboratory of Experimental Cancerology, Federal University of Piauí; Teresina Piauí 64 049-550 Brazil
| | - Razina Rouf
- Department of Pharmacy; Bangabandhu Sheikh Mujibur Rahman Science & Technology University; Gopalganj Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline; Life Science School, Khulna University; Khulna Bangladesh
| | | | | |
Collapse
|
5
|
A comprehensive review on biological properties of citrinin. Food Chem Toxicol 2017; 110:130-141. [PMID: 28993214 DOI: 10.1016/j.fct.2017.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/23/2022]
Abstract
Citrinin (CIT) is a mycotoxin which causes contamination in the food and is associated with different toxic effects. A web search on CIT has been conducted covering the timespan since 1946. The accumulated data indicate that CIT is produced by several fungal strains belonging to Penicillium, Aspergillus and Monascus genera, and is usually found together with another nephrotoxic mycotoxin, ochratoxin A. Although, it is evident that CIT exposure can exert toxic effects on the heart, liver, kidney, as well as reproductive system, the mechanism of CIT-induced toxicity remains largely elusive. It is still controversial what are the genotoxic and mutagenic effects of CIT. Until now, its toxic effect has been linked to the CIT-mediated oxidative stress and mitochondrial dysfunction in biological systems. However, the toxicity strongly depends on its concentration, route, frequency and time of exposure, as well as from the used test systems. Besides the toxic effects, CIT is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro. This systematic review presents the current state of CIT research with emphasis on its bioactivity profile.
Collapse
|
6
|
Čulig B, Bevardi M, Bošnir J, Serdar S, Lasić D, Racz A, Galić A, Kuharić Ž. PRESENCE OF CITRININ IN GRAINS AND ITS POSSIBLE HEALTH EFFECTS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:22-30. [PMID: 28480413 PMCID: PMC5412229 DOI: 10.21010/ajtcam.v14i3.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Citrinin is a mycotoxin produced by several species of the genera Aspergillus, Penicillium and Monascus and it occurs mainly in stored grain. Citrinin is generally formed after harvest and occurs mainly in stored grains, it also occurs in other plant products. Often, the co-occurrence with other mycotoxins is observed, especially ochratoxin A, which is usually associated with endemic nephropathy. At the European Union level, systematic monitoring of Citrinin in grains began with the aim of determining its highest permissible amount in food. Thus, far the systematic monitoring of the above mentioned mycotoxin in Croatia is yet to begin. Materials and Methods: The main goal of this study was to determine the presence of Citrinin in grains sampled in the area of Međimurje, Osijek-Baranja, Vukovar-Srijem and Brod-Posavina County. For the purpose of identification and quantification of citrinin, high performance liquid chromatograph (HPLC) with fluorescence was used (Calibration curve k > 0.999; Intra assay CV = 2.1%; Inter assay CV = 4.3%; LOQ < 1 μg/kg). Results: From the area of Međimurje County, 10 samples of corn and 10 samples of wheat were analyzed. None of the samples contained Citrinin (<1 μg/kg). From the area of Osijek-Baranja and Vukovar-Srijem County, 15 samples from each County were analyzed. The mean value for the samples of Osijek-Baranja County was 19.63 μg/kg (median=15.8 μg/kg), while for Vukovar-Srijem County the mean value of citrinin was 14,6 μg/kg (median=1.23 μg/kg). From 5 analyzed samples from Brod-Posavina County, one of the samples contained citrinin in the amount of 23.8 μg/kg, while the registered amounts in the other samples were <1 μg/kg. Conclusion: The results show that grains from several Counties contain certain amounts of Citrinin possibly indicating a significant intake of citrinin in humans. It must be stated that grains and grain-based products are the basis of everyday diet of all age groups, especially small children, where higher intake of citrinin can occur. Consequently, we emphasize the need for systematic analysis of larger amount of samples, from both large grains and small grains, especially in the area of Brod-Posavina County, in order to obtain more realistic notion of citrinin contamination of grains and to asses the health risk in humans.
Collapse
Affiliation(s)
- Borna Čulig
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Martina Bevardi
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Jasna Bošnir
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Sonja Serdar
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Dario Lasić
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Aleksandar Racz
- Zagreb University of Health Sciences, Mlinarska 38, Zagreb, Croatia
| | - Antonija Galić
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| | - Željka Kuharić
- Institute of public health "Dr. Andrija Štampar", Zagreb, Croatia
| |
Collapse
|
7
|
Guo W, Li D, Peng J, Zhu T, Gu Q, Li D. Penicitols A-C and penixanacid A from the mangrove-derived Penicillium chrysogenum HDN11-24. JOURNAL OF NATURAL PRODUCTS 2015; 78:306-310. [PMID: 25611519 DOI: 10.1021/np500586r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three new citrinin analogues, penicitols A-C (1-3), and one new xanthone derivative, penixanacid A (4), together with four known biogenetically related compounds (5-8), were discovered from the extract of a mangrove-derived fungus, Penicillium chrysogenum HND11-24. The structures of penicitols A-C and penixanacid A were established through analysis of extensive spectroscopic data. Their cytotoxic activity against HeLa, BEL-7402, HEK-293, HCT-116, and A549 cell lines was evaluated.
Collapse
Affiliation(s)
- Wenqiang Guo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, People's Republic of China
| | | | | | | | | | | |
Collapse
|