1
|
Serrano-Civantos M, Beraza E, Álvarez-Erviti L, de Cerain AL, Vettorazzi A. Potential role of ochratoxin A in Parkinson's disease: a systematic review of current evidence. Arch Toxicol 2025; 99:1769-1790. [PMID: 40044834 PMCID: PMC12085323 DOI: 10.1007/s00204-025-03994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 05/18/2025]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium species that contaminates various food and feed products, presenting potential risks to human health. While OTA is well-known for its nephrotoxic effects, emerging evidence highlights its neurotoxic potential. Parkinson's disease (PD) is a neurodegenerative disorder with both genetic and environmental aetiologies. Emerging lines of investigation have focused their research on the role of environmental toxins, including mycotoxins, in PD pathogenesis. However, the specific involvement of OTA in PD-related pathways still needs to be unravelled. This systematic review compiles and evaluates OTA neurotoxicity studies according to the adverse outcome pathway (AOP) for PD, established by the Organisation for Economic Cooperation and Development (OECD). The AOP framework outlines a series of key event (KEs) beginning with mitochondrial Complex I (CI) inhibition and progressing through mitochondrial dysfunction, impaired proteostasis, dopaminergic neuron degeneration, neuroinflammation, and resulting in parkinsonian motor deficits. In this systematic review, a comprehensive literature search was conducted in PubMed, to identify studies evaluating OTA neurotoxic effects. Using a search strategy of 19 terms and following a two-phased study selection, 30 relevant studies were retrieved, of which 16 dealt with in vitro adult neurotoxicity (ANT), 13 focused on in vivo ANT, and 1 gave both in vitro and in vivo approaches. Authors agree that in vitro and in vivo exposure to OTA causes mitochondrial dysfunction, impaired proteostasis, degeneration of dopaminergic (DA) neurons, and neuroinflammation. However, a notable absence of research remains on the molecular initiating event (MIE), binding to CI, and on KE1, inhibition of CI. This review identifies critical research gaps and highlights the need for further mechanistic studies on the impact of OTA on neurodegenerative pathways, particularly its binding and inhibition of CI, as well as mechanisms related to KE3: impaired proteostasis. Addressing these gaps may provide valuable insights into OTA neurotoxic potential and its relevance in PD-like neurodegeneration.
Collapse
Affiliation(s)
- M Serrano-Civantos
- Department of Pharmaceutical Sciences, MITOX Research Group, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - E Beraza
- Department of Pharmaceutical Sciences, MITOX Research Group, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - L Álvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 26006, Logroño, Spain
| | - A López de Cerain
- Department of Pharmaceutical Sciences, MITOX Research Group, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - A Vettorazzi
- Department of Pharmaceutical Sciences, MITOX Research Group, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
| |
Collapse
|
2
|
Lai X, Fan P, Deng H, Jia G, Zuo Z, Hu Y, Wang Y, Cai D, Gou L, Wen Y, Yu S, Cao S, Shen L, Deng J, Ren Z. Effects of isochlorogenic acid A on mitochondrial dynamics imbalance and RLR damage in PAM cells induced by combined mycotoxins. Toxicology 2024; 508:153920. [PMID: 39137830 DOI: 10.1016/j.tox.2024.153920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Mycotoxins have strong immunotoxicity and can induce oxidative stress and mitochondrial dynamics imbalance. Mitochondrial antiviral signaling protein (MAVS) in the RIG-I like receptor (RLR) pathway of innate immunity is located on mitochondria, and whether it is affected by mycotoxins has not been reported yet. This experiment used porcine alveolar macrophages (PAM) to evaluate the antagonism of three isomers of chlorogenic acid (chlorogenic acid, isochlorogenic acid A, and neochlorogenic acid) against combined mycotoxins (Aflatoxin B1, Deoxynivalenol, and Ochratoxin A) induced mitochondrial damage and their effects on the RLR pathway, providing assistance for further elucidating the mechanism of mycotoxin immunotoxicity. Western blotting, enzyme linked immunosorbent assay (ELISA), and flow cytometry were used to detect relevant indicators. All three types of chlorogenic acid treatment can antagonize the cytotoxicity induced by combined mycotoxins, especially isochlorogenic acid A, which can protect cells from mycotoxins damage by maintaining mitochondrial dynamic homeostasis and improving innate immune function related to the RLR pathway.
Collapse
Affiliation(s)
- Xinuo Lai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Fan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huidan Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guilin Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shumin Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
de Sá SVM, Sousa Monteiro C, Fernandes JO, Pinto E, Faria MA, Cunha SC. Evaluating the human neurotoxicity and toxicological interactions impact of co-occurring regulated and emerging mycotoxins. Food Res Int 2024; 184:114239. [PMID: 38609220 DOI: 10.1016/j.foodres.2024.114239] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Mycotoxins can inflict harmful effects on diverse organs, and mounting evidence indicates their potential involvement in human neurodegenerative diseases. Given the common occurrence of these toxins in food, there is an increasing demand for a comprehensive assessment of their combined toxicity to enhance our understanding of their potential hazards. This research investigates mycotoxin exposure from widely consumed cereal-based products, including enniatin B (ENNB), sterigmatocystin (STG), aflatoxin B1 (AFB1), cyclopiazonic acid (CPZ), citrinin (CIT), and ochratoxin A (OTA). Employing the median-effect equation based on Chou and Talalay's mass-action law, we assessed their cytotoxicity in human SH-SY5Y neuronal cells. Notably, ENNB displayed the highest neurotoxicity (IC50 = 3.72 µM), followed by OTA (9.10 µM) and STG (9.99 µM). The combination of OTA + STG exhibited the highest toxicity (IC50 = 3.77 µM), while CPZ + CIT showed the least detrimental effect. Approximately 70 % of tested binary combinations displayed synergistic or additive effects, except for ENNB + STG, ENNB + AFB1, and CPZ + CIT, which showed antagonistic interactions. Intriguingly, the senary combination displayed moderate antagonism at the lowest exposure and moderate synergism at higher doses. OTA exhibited predominantly synergistic interactions, comprising approximately 90 %, a noteworthy finding considering its prevalence in food. Conversely, ENNB interactions tended to be antagonistic. The most remarkable synergy occurred in the STG and CIT combination, enabling a 50-fold reduction in CIT dosage for an equivalent toxic effect. These findings highlight the biological relevance of robust synergistic interactions, emphasizing the need to assess human exposure hazards accurately, particularly considering frequent mycotoxin co-occurrence in environmental and food settings.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carolina Sousa Monteiro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Obafemi BA, Adedara IA, Rocha JBT. Neurotoxicity of ochratoxin A: Molecular mechanisms and neurotherapeutic strategies. Toxicology 2023; 497-498:153630. [PMID: 37709162 DOI: 10.1016/j.tox.2023.153630] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Data from epidemiological and experimental studies have evidenced that some chemical contaminants in food elicit their harmful effects by targeting the central nervous system. Ochratoxin A is a foodborne mycotoxin produced by Aspergillus and Penicillium species. Research on neurotoxicity associated with ochratoxin A exposure has increased greatly in recent years. The present review accrued substantial evidence on the neurotoxicity associated with ochratoxin A exposure as well as discussed notable susceptible targets of noxious ochratoxin A at molecular, cellular and genetic levels. Specifically, the neurotoxic mechanisms associated with ochratoxin A exposure were unequivocally unraveled in vitro using human neuroblastoma SH-SY5Y cells, mouse hippocampal HT22 cells, human astrocyte (NHA-SV40LT) cells and microglia cells as well as in vivo using mammalian and non-mammalian models. Data from human biomonitoring studies on plasma ochratoxin A levels in patients with neurodegenerative diseases with some age- and sex-related responses were also highlighted. Moreover, the neurotherapeutic mechanisms of some naturally occurring bioactive compounds against ochratoxin A neurotoxicity are reviewed. Collectively, accumulated data from literature demonstrate that ochratoxin A is a neurotoxin with potential pathological involvement in neurological disorders. Cutting edge original translational research on the development of neurotherapeutics for neurotoxicity associated with foodborne toxicants including ochratoxin A is indispensable.
Collapse
Affiliation(s)
- Blessing A Obafemi
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil; Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105- 900 Santa Maria, RS, Brazil.
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
5
|
Frangiamone M, Alonso-Garrido M, Font G, Cimbalo A, Manyes L. Pumpkin extract and fermented whey individually and in combination alleviated AFB1- and OTA-induced alterations on neuronal differentiation invitro. Food Chem Toxicol 2022; 164:113011. [PMID: 35447289 DOI: 10.1016/j.fct.2022.113011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023]
Abstract
Food and feed are daily exposed to mycotoxin contamination which effects may be counteracted by functional compounds like carotenoids and fermented whey. Among mycotoxins, the most toxic and studied are aflatoxin B1 (AFB1) and ochratoxin A (OTA), which neurotoxicity is not well reported. Therefore, SH-SY5Y human neuroblastoma cells ongoing differentiation were exposed during 7 days to digested bread extracts contained pumpkin and fermented whey, individually and in combination, along with AFB1 and OTA and their combination, in order to evaluate their presumed effects on neuronal differentiation. The immunofluorescence analysis of βIII-tubulin and dopamine markers pointed to OTA as the most damaging treatment for cell differentiation. Cell cycle analysis reported the highest significant differences for OTA-contained bread compared to the control in phase G0/G1. Lastly, RNA extraction was performed and gene expression was analyzed by qPCR. The selected genes were related to neuronal differentiation and cell cycle. The addition of functional ingredients in breads not only enhancing the expression of neuronal markers, but also induced an overall improvement of gene expression compromised by mycotoxins activity. These data confirm that in vitro neuronal differentiation may be impaired by AFB1 and OTA-exposure, which could be modulated by bioactive compounds naturally found in diet.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Manuel Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain.
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Vicent Andrés Estellés s/n, 46100, Burjassot, Spain
| |
Collapse
|
6
|
In vitro and in vivo evaluation of AFB1 and OTA-toxicity through immunofluorescence and flow cytometry techniques: A systematic review. Food Chem Toxicol 2021; 160:112798. [PMID: 34973406 DOI: 10.1016/j.fct.2021.112798] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 01/20/2023]
Abstract
Due to the globalization, mycotoxins have been considered a major risk to human health being the main contaminants of foodstuffs. Among them, AFB1 and OTA are the most toxic and studied. Therefore, the goal of this review is to deepen the knowledge about the toxicological effects that AFB1 and OTA can induce on human health by using flow cytometry and immunofluorescence techniques in vitro and in vivo models. The examination of the selected reports shows that the majority of them are focused on immunotoxicity while the rest are concerned about nephrotoxicity, hepatotoxicity, gastrointestinal toxicity, neurotoxicity, embryotoxicity, reproductive system, breast, esophageal and lung toxicity. In relation to immunofluorescence analysis, biological processes related to AFB1- and OTA-toxicity were evaluated such as inflammation, neuronal differentiation, DNA damage, oxidative stress and cell death. In flow cytometry analysis, a wide range of assays have been performed across the reviewed studies being apoptosis assay, cell cycle analysis and intracellular ROS measurement the most employed. Although, the toxic effects of AFB1 and OTA have been reported, further research is needed to clarify AFB1 and OTA-mechanism of action on human health.
Collapse
|
7
|
Zhu L, Yuhan J, Huang K, He X, Liang Z, Xu W. Multidimensional analysis of the epigenetic alterations in toxicities induced by mycotoxins. Food Chem Toxicol 2021; 153:112251. [PMID: 33961929 DOI: 10.1016/j.fct.2021.112251] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Mycotoxins contaminate all types of food and feed, threatening human and animal health through food chain accumulation, producing various toxic effects. Increasing attention is being focused on the molecular mechanism of mycotoxin-induced toxicity in all kinds of in vivo and in vitro models. Epigenetic alterations, including DNA methylation, non-coding RNAs (ncRNAs), and protein post-translational modifications (PTMs), were identified as being involved in various types of mycotoxin-induced toxicity. In this review, the emphasis was on summarizing the epigenetic alterations induced by mycotoxin, including aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEA), fumonisin B1 (FB1), and deoxynivalenol (DON). This review summarized and analyzed the roles of DNA methylation, ncRNAs, and protein PTMs after mycotoxin exposure based on recently published papers. Moreover, the main research methods and their deficiencies were determined, while some remedial suggestions are proposed. In summary, this review helps to understand better the epigenetic alterations induced by the non-genotoxic effects of mycotoxin.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
8
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
9
|
Al-Jaal B, Latiff A, Salama S, Hussain HM, Al-Thani NA, Al-Naimi N, Al-Qasmi N, Horvatovich P, Jaganjac M. Analysis of Multiple Mycotoxins in the Qatari Population and Their Relation to Markers of Oxidative Stress. Toxins (Basel) 2021; 13:toxins13040267. [PMID: 33917988 PMCID: PMC8068385 DOI: 10.3390/toxins13040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are naturally occurring food toxins worldwide that can cause serious health effects. The measurement of mycotoxin biomarkers in biological fluids is needed to assess individuals' exposure. The aim of this study was to investigate the incidence of mycotoxins in the Qatari population. Serum samples from 412 adults and urinary samples from 559 adults were analyzed for the presence of mycotoxin biomarkers. Multimycotoxin approaches have been applied, using liquid chromatography mass spectrometry methods. Samples were further analyzed for the oxidative stress markers and compared with regard to the incidence of mycotoxins. The presence of mycotoxins was identified in 37% of serum samples and in less than 20% of urine samples. It was found that 88% of positive of the samples were positive for only one mycotoxin, while 12% of positive samples had two or more mycotoxins. Trichothecenes and zearalenone metabolites were most commonly detected mycotoxins, followed by aflatoxins, roquefortine C and mycophenolic acid. The presence of mycotoxins was found to positively correlate with oxidative stress markers. The obtained results illustrate the importance of mycotoxin biomonitoring studies in humans and the need to elucidate the underlying mechanisms of mycotoxin-induced toxicity.
Collapse
Affiliation(s)
- Belqes Al-Jaal
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Aishah Latiff
- School of Pharmaceutical Sciences, University of Science Malaysia, Gelugor 11700, Pulau Pinang, Malaysia;
| | - Sofia Salama
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Huda Mohamed Hussain
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Noora Abdulaziz Al-Thani
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Noor Al-Naimi
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Noof Al-Qasmi
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Morana Jaganjac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
10
|
Otero C, Arredondo C, Echeverría-Vega A, Gordillo-Fuenzalida F. Penicillium spp. mycotoxins found in food and feed and their health effects. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by fungi. These compounds have different structures and target different organs, acting at different steps of biological processes inside the cell. Around 32 mycotoxins have been identified in fungal Penicillium spp. isolated from food and feed. Some of these species are important pathogens which contaminate food, such as maize, cereals, soybeans, sorghum, peanuts, among others. These microorganisms can be present in different steps of the food production process, such as plant growth, harvest, drying, elaboration, transport, and packaging. Although some Penicillium spp. are pathogens, some of them are used in elaboration of processed foods, such as cheese and sausages. This review summarises the Penicillium spp. mycotoxin toxicity, focusing mainly on the subgenus Penicillium, frequently found in food and feed. Toxicity is reviewed both in animal models and cultured cells. Finally, some aspects of their regulations are discussed.
Collapse
Affiliation(s)
- C. Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago, Chile
| | - C. Arredondo
- Laboratorio de Neuroepigenética, Instituto de Ciencias Biomédicas (ICB), Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago, Chile
| | - A. Echeverría-Vega
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - F. Gordillo-Fuenzalida
- Centro de Biotecnología de los Recursos Naturales (CENBIO), Laboratorio de Microbiología Aplicada, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel 3605, Talca, Chile
| |
Collapse
|