1
|
Nguyen TBH, Henri-Sanvoisin A, Coton M, Le Floch G, Picot A. Shifts in Fusarium Communities and Mycotoxins in Maize Residues, Soils, and Wheat Grains throughout the Wheat Cycle: Implications for Fusarium Head Blight Epidemiology. Microorganisms 2024; 12:1783. [PMID: 39338458 PMCID: PMC11434071 DOI: 10.3390/microorganisms12091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Fusarium Head Blight (FHB), predominantly caused by Fusarium species, is a devastating cereal disease worldwide. While considerable research has focused on Fusarium communities in grains, less attention has been given to residues and soil, the primary inoculum sources. Knowledge of Fusarium spp. diversity, dynamics, and mycotoxin accumulation in these substrates is crucial for assessing their contribution to wheat head infection and the complex interactions among Fusarium communities throughout the wheat cycle. We monitored six minimum-tillage wheat fields, with maize as the preceding crop, over two years. Soils, maize residues, and wheat grains were sampled at four stages. Fusarium composition was analyzed using a culture-dependent method, species-specific qPCR, and EF1α region metabarcoding sequencing, enabling species-level resolution. The Fusarium communities were primarily influenced by substrate type, accounting for 35.8% of variance, followed by sampling location (8.1%) and sampling stage (3.2%). Among the 32 identified species, F. poae and F. graminearum dominated grains, with mean relative abundances of 47% and 29%, respectively. Conversely, residues were mainly contaminated by F. graminearum, with a low presence of F. poae, as confirmed by species-specific qPCR. Notably, during periods of high FHB pressure, such as in 2021, F. graminearum was the dominant species in grains. However, in the following year, F. poae outcompeted F. graminearum, resulting in reduced disease pressure, consistent with the lower pathogenicity of F. poae. Source Tracker analysis indicated that residues were a more significant source of Fusarium contamination on wheat in 2021 compared to 2022, suggesting that F. graminearum in 2021 primarily originated from residues, whereas F. poae's sources of infection need further investigation. Additionally, multiple mycotoxins were detected and quantified in maize residues during the wheat cycle, raising the question of their ecological role and impact on the soil microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France; (T.B.H.N.); (A.H.-S.); (M.C.); (G.L.F.)
| |
Collapse
|
2
|
Kenngott KGJ, Muñoz K. The potential of soil microbial communities to transform deoxynivalenol in agricultural soils-a soil microcosm study. Mycotoxin Res 2024; 40:295-307. [PMID: 38507027 PMCID: PMC11588787 DOI: 10.1007/s12550-024-00526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/22/2024]
Abstract
Infestation of cereal fields with toxigenic Fusarium species is identified as an environmental source for the mycotoxin deoxynivalenol (DON). During rain events, DON may be washed off from infested plants and enter the soil, where microbial transformation may occur. Although some studies showed DON transformation potential of soil microbial communities in liquid soil extracts, these findings can not be transferred to environmental conditions. Accordingly, microbial transformation of DON in soil has to be investigated under realistic conditions, e.g., microcosms mimicking field situations. In this study, we investigated the potential of soil microbial communities to transform DON in six different agricultural soils at two levels (0.5 and 5 µg g-1). The dissipation and the formation of transformation products were investigated in a period of 35 days and compared to a sterilized control. In addition, we measured soil respiration and applied the phospholipid-derived fatty acid (PLFA) analysis to assess whether soil microbial community characteristics are related to the microbial transformation potential. Dissipation of DON in non-sterilized soils was fast (50% dissipation within 0.6-3.7 days) compared to the sterile control where almost no dissipation was observed. Thus, dissipation was mainly attributed to microbial transformation. We verified that small amounts of DON are transformed to 3-keto-deoxynivalenol (3-keto-DON) and 3-epi-deoxynivalenol (3-epi-DON), which were not detectable after 16-day incubation, indicating further transformation processes. There was a trend towards faster transformation in soils with active and large microbial communities and low fungi-to-bacteria ratio.
Collapse
Affiliation(s)
- Kilian G J Kenngott
- Institute for Environmental Sciences (iES) Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, Landau, 76829, Rhineland-Palatinate, Germany
| | - Katherine Muñoz
- Institute for Environmental Sciences (iES) Landau, RPTU Kaiserslautern-Landau, Fortstraße 7, Landau, 76829, Rhineland-Palatinate, Germany.
| |
Collapse
|
3
|
Kenngott KGJ, Albert J, Meyer-Wolfarth F, Schaumann GE, Muñoz K. Fusarium Mycotoxins in Maize Field Soils: Method Validation and Implications for Sampling Strategy. Toxins (Basel) 2022; 14:130. [PMID: 35202157 PMCID: PMC8875666 DOI: 10.3390/toxins14020130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
While mycotoxins are generally regarded as food contamination issues, there is growing interest in mycotoxins as environmental pollutants. The main sources of trichothecene and zearalenone mycotoxins in the environment are mainly attributed to Fusarium infested fields, where mycotoxins can wash off in infested plants or harvest residues. Subsequently, mycotoxins inevitably enter the soil. In this context, investigations into the effects, fate, and transport are still needed. However, there is a lack of analytical methods used to determine Fusarium toxins in soil matrices. We aimed to validate an analytical method capable of determining the toxins nivalenol (NIV), deoxynivalenol (DON), 15-acetyl-deoxynivalenol (15-AcDON), and zearalenone (ZEN), at environmentally relevant concentrations, in five contrasting agricultural soils. Soils were spiked at three levels (3, 9 and 15 ng g-1), extracted by solid-liquid extraction assisted with ultrasonication, using a generic solvent composition of acetonitrile:water 84:16 (v:v) and measured by LC-HRMS. Method validation was successful for NIV, DON, and 15-AcDON with mean recoveries > 93% and RSDr < 10%. ZEN failed the validation criteria. The validated method was applied to eight conventionally managed maize field soils during harvest season, to provide a first insight into DON, NIV, and 15-AcDON levels. Mycotoxins were present in two out of eight sampled maize fields. Soil mycotoxin concentrations ranged from 0.53 to 19.4 ng g-1 and 0.8 to 2.2 ng g-1 for DON and NIV, respectively. Additionally, we found indication that "hot-spot" concentrations were restricted to small scales (<5 cm) with implications for field scale soil monitoring strategies.
Collapse
Affiliation(s)
- Kilian G. J. Kenngott
- Group of Environmental and Soil Chemistry, Institute for Environmental Sciences (iES) Landau, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany; (K.G.J.K.); (J.A.); (G.E.S.)
| | - Julius Albert
- Group of Environmental and Soil Chemistry, Institute for Environmental Sciences (iES) Landau, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany; (K.G.J.K.); (J.A.); (G.E.S.)
| | - Friederike Meyer-Wolfarth
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Field Crops and Grassland, Messeweg 11/12, 38104 Braunschweig, Germany;
| | - Gabriele E. Schaumann
- Group of Environmental and Soil Chemistry, Institute for Environmental Sciences (iES) Landau, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany; (K.G.J.K.); (J.A.); (G.E.S.)
| | - Katherine Muñoz
- Group of Organic and Ecological Chemistry, Institute for Environmental Sciences (iES) Landau, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| |
Collapse
|
4
|
Yu S, Wu Z, Xu G, Li C, Wu Z, Li Z, Chen X, Lin M, Fang X, Lin Y. Inconsistent Patterns of Soil Fauna Biodiversity and Soil Physicochemical Characteristic Along an Urbanization Gradient. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.824004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urbanization has induced substantial changes in soil physicochemical characteristic, which plays an important role in regulating soil fauna biodiversity in forests and grasslands. However, less is known about the urbanization effect on soil fauna biodiversity and how soil physicochemical changes mediate this effect. Along an urbanization gradient in the city of Guangzhou, we established four sites with different urbanization intensities, including an urban site, two suburban sites, and a rural site, and then studied their soil physicochemical characteristic and soil fauna biodiversity. The soil physicochemical characteristic dramatically changed along the urbanization gradient. In contrast, the soil fauna biodiversity exhibited a very different pattern. Soil fauna abundance was highest in the suburban sites. Moreover, there were significant changes of Pielou’s evenness and community structure in the suburban sites. Soil fauna biodiversity property in the urban site was similar to that in the rural site, except that the rural site was characterized by Enchytraeidae while the urban site was not characterized by any taxa. Our linear and canonical correspondence analysis models suggested that soil physicochemical characteristic only contributed a little to the variance of soil fauna abundance (19%), taxa number (27%), and community structure (12%). In contrast, soil physicochemical characteristic explained about half of the variance in Shannon’s diversity and Pielou’s evenness. However, with urbanization intensity increasing, soil physicochemical changes could both increase and decrease the diversity and evenness. Thus, our results revealed an inconsistent pattern between soil fauna biodiversity and soil physicochemical characteristic along an urbanization gradient. This study suggested that soil physicochemical change was less important as expected in regulating soil fauna biodiversity pattern under an urbanization context. To elucidate the effect of urbanization on soil fauna biodiversity, further studies should take other urbanization agents into account.
Collapse
|
5
|
Ganesan AR, Mohan K, Karthick Rajan D, Pillay AA, Palanisami T, Sathishkumar P, Conterno L. Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chem 2021; 378:131978. [PMID: 35033712 DOI: 10.1016/j.foodchem.2021.131978] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/28/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
Mycotoxins are secondary metabolites of fungi that cause severe damage to agricultural products and food in the food supply chain. These detrimental pollutants have been directly linked with poor socioeconomic patterns and human health issues. Among the natural micropollutants, ochratoxin A (OTA) and deoxynivalenol (DON) are widely distributed in food materials. The primary occurrence of these mycotoxins is reported in almost all cereal grains and fresh agro-products. Both mycotoxins have shown harmful effects, such as nephrotoxic, hepatotoxic, and genotoxic effects, in humans due to their complex structural formation during the degradation/acetylation reaction. In addition, improper preharvest, harvest, and postharvest handling tend to lead to the formation of OTA and DON in various food commodities, which allows different harmful fungicides in practice. Therefore, this review provides more insight into the distribution and toxicity of OTA/DON in the food matrix and human health. Furthermore, the interactive effects of OTA/DON with co-contaminated organic and inorganic compounds are discussed. Finally, international regulation and mitigation strategies for detoxication are critically evaluated to meet food safety and good agriculture practices.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Centre, Ora (BZ), Auer 39040, Italy.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu 608502, India
| | - Arti A Pillay
- School of Applied Sciences, College of Engineering Science and Technology, Fiji National University, Nabua Campus- 7222, Fiji Islands
| | - Thavamani Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Palanivel Sathishkumar
- Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Lorenza Conterno
- Group of Fermentation and Distillation, Laimburg Research Centre, Ora (BZ), Auer 39040, Italy.
| |
Collapse
|