1
|
Szczepski K, Jaremko Ł. AlphaFold and what is next: bridging functional, systems and structural biology. Expert Rev Proteomics 2025; 22:45-58. [PMID: 39824781 DOI: 10.1080/14789450.2025.2456046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION The DeepMind's AlphaFold (AF) has revolutionized biomedical and biocience research by providing both experts and non-experts with an invaluable tool for predicting protein structures. However, while AF is highly effective for predicting structures of rigid and globular proteins, it is not able to fully capture the dynamics, conformational variability, and interactions of proteins with ligands and other biomacromolecules. AREAS COVERED In this review, we present a comprehensive overview of the latest advancements in 3D model predictions for biomacromolecules using AF. We also provide a detailed analysis its of strengths and limitations, and explore more recent iterations, modifications, and practical applications of this strategy. Moreover, we map the path forward for expanding the landscape of AF toward predicting structures of every protein and peptide, and their interactions in the proteome in the most physiologically relevant form. This discussion is based on an extensive literature search performed using PubMed and Google Scholar. EXPERT OPINION While significant progress has been made to enhance AF's modeling capabilities, we argue that a combined approach integrating both various in silico and in vitro methods will be most beneficial for the future of structural biology, bridging the gaps between static and dynamic features of proteins and their functions.
Collapse
Affiliation(s)
- Kacper Szczepski
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Borzova VA, Eronina TB, Mikhaylova VV, Roman SG, Chernikov AM, Chebotareva NA. Effect of Chemical Chaperones on the Stability of Proteins during Heat- or Freeze-Thaw Stress. Int J Mol Sci 2023; 24:10298. [PMID: 37373447 DOI: 10.3390/ijms241210298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The importance of studying the structural stability of proteins is determined by the structure-function relationship. Protein stability is influenced by many factors among which are freeze-thaw and thermal stresses. The effect of trehalose, betaine, sorbitol and 2-hydroxypropyl-β-cyclodextrin (HPCD) on the stability and aggregation of bovine liver glutamate dehydrogenase (GDH) upon heating at 50 °C or freeze-thawing was studied by dynamic light scattering, differential scanning calorimetry, analytical ultracentrifugation and circular dichroism spectroscopy. A freeze-thaw cycle resulted in the complete loss of the secondary and tertiary structure, and aggregation of GDH. All the cosolutes suppressed freeze-thaw- and heat-induced aggregation of GDH and increased the protein thermal stability. The effective concentrations of the cosolutes during freeze-thawing were lower than during heating. Sorbitol exhibited the highest anti-aggregation activity under freeze-thaw stress, whereas the most effective agents stabilizing the tertiary structure of GDH were HPCD and betaine. HPCD and trehalose were the most effective agents suppressing GDH thermal aggregation. All the chemical chaperones stabilized various soluble oligomeric forms of GDH against both types of stress. The data on GDH were compared with the effects of the same cosolutes on glycogen phosphorylase b during thermal and freeze-thaw-induced aggregation. This research can find further application in biotechnology and pharmaceutics.
Collapse
Affiliation(s)
- Vera A Borzova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia
| | - Tatiana B Eronina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia
| | - Svetlana G Roman
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia
| | - Andrey M Chernikov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, 119071 Moscow, Russia
| |
Collapse
|
3
|
Swathi PV, Abdulkareem U, Kartha TR, Madhurima V. Hydrogen Bonding in 1‐Propanol‐Ethanol Binary Mixture: Experimental and Modeling Approaches. ChemistrySelect 2022. [DOI: 10.1002/slct.202200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- P. V. Swathi
- Department of Physics School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610005 Tamil Nadu India
| | - U. Abdulkareem
- Department of Physics School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610005 Tamil Nadu India
| | - Thejus R Kartha
- International School of Engineering (INSOFE) 2nd Floor, Jyothi Imperial, Vamsiram Builders, Gachibowli Hyderabad Telangana 500032 India
| | - V. Madhurima
- Department of Physics School of Basic and Applied Sciences Central University of Tamil Nadu Thiruvarur 610005 Tamil Nadu India
| |
Collapse
|
4
|
SAXS Reveals the Stabilization Effects of Modified Sugars on Model Proteins. Life (Basel) 2022; 12:life12010123. [PMID: 35054516 PMCID: PMC8778440 DOI: 10.3390/life12010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Many proteins are usually not stable under different stresses, such as temperature and pH variations, mechanical stresses, high concentrations, and high saline contents, and their transport is always difficult, because they need to be maintained in a cold regime, which is costly and very challenging to achieve in remote areas of the world. For this reason, it is extremely important to find stabilizing agents that are able to preserve and protect proteins against denaturation. In the present work, we investigate, by extensively using synchrotron small-angle X-ray scattering experiments, the stabilization effect of five different sugar-derived compounds developed at ExtremoChem on two model proteins: myoglobin and insulin. The data analysis, based on a novel method that combines structural and thermodynamic features, has provided details about the physical-chemical processes that regulate the stability of these proteins in the presence of stabilizing compounds. The results clearly show that some modified sugars exert a greater stabilizing effect than others, being able to maintain the active forms of proteins at temperatures higher than those in which proteins, in the absence of stabilizers, reach denatured states.
Collapse
|
5
|
Moretti P, Mariani P, Ortore MG, Plotegher N, Bubacco L, Beltramini M, Spinozzi F. Comprehensive Structural and Thermodynamic Analysis of Prefibrillar WT α-Synuclein and Its G51D, E46K, and A53T Mutants by a Combination of Small-Angle X-ray Scattering and Variational Bayesian Weighting. J Chem Inf Model 2020; 60:5265-5281. [PMID: 32866007 PMCID: PMC8154249 DOI: 10.1021/acs.jcim.0c00807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/13/2022]
Abstract
The in solution synchrotron small-angle X-ray scattering SAXS technique has been used to investigate an intrinsically disordered protein (IDP) related to Parkinson's disease, the α-synuclein (α-syn), in prefibrillar diluted conditions. SAXS experiments have been performed as a function of temperature and concentration on the wild type (WT) and on the three pathogenic mutants G51D, E46K, and A53T. To identify the conformers that populate WT α-syn and the pathogenic mutants in prefibrillar conditions, scattering data have been analyzed by a new variational bayesian weighting method (VBWSAS) based on an ensemble of conformers, which includes unfolded monomers, trimers, and tetramers, both in helical-rich and strand-rich forms. The developed VBWSAS method uses a thermodynamic scheme to account for temperature and concentration effects and considers long-range protein-protein interactions in the framework of the random phase approximation. The global analysis of the whole set of data indicates that WT α-syn is mostly present as unfolded monomers and trimers (helical-rich trimers at low T and strand-rich trimers at high T), but not tetramers, as previously derived by several studies. On the contrary, different conformer combinations characterize mutants. In the α-syn G51D mutant, the most abundant aggregates at all the temperatures are strand-rich tetramers. Strand-rich tetramers are also the predominant forms in the A53T mutant, but their weight decreases with temperature. Only monomeric conformers, with a preference for the ones with the smallest sizes, are present in the E46K mutant. The derived conformational behavior then suggests a different availability of species prone to aggregate, depending on mutation, temperature, and concentration and accounting for the different neurotoxicity of α-syn variants. Indeed, this approach may be of pivotal importance to describe conformational and aggregational properties of other IDPs.
Collapse
Affiliation(s)
- Paolo Moretti
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Marche, Italy
| | - Paolo Mariani
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Marche, Italy
| | - Maria Grazia Ortore
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Marche, Italy
| | | | - Luigi Bubacco
- Department
of Biology, University of Padova, 35121 Padova, Veneto, Italy
| | - Mariano Beltramini
- Department
of Biology, University of Padova, 35121 Padova, Veneto, Italy
| | - Francesco Spinozzi
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Marche, Italy
| |
Collapse
|
6
|
Costanzo S, Banc A, Louhichi A, Chauveau E, Wu B, Morel MH, Ramos L. Tailoring the Viscoelasticity of Polymer Gels of Gluten Proteins through Solvent Quality. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Salvatore Costanzo
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Amélie Banc
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Ameur Louhichi
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Edouard Chauveau
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Baohu Wu
- Forschungszentrum Jülich GmbH JCNS am MLZ,Lichtenbergstr. 1, Garching 85748, Germany
| | - Marie-Hélène Morel
- Ingénierie des Agro-Polymères et Technologies Emergentes (IATE), Univ. Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| |
Collapse
|
7
|
Halder R, Jana B. Exploring the role of hydrophilic amino acids in unfolding of protein in aqueous ethanol solution. Proteins 2020; 89:116-125. [PMID: 32860277 DOI: 10.1002/prot.25999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Hydrophobic association is the key contributor behind the formation of well packed core of a protein which is often believed to be an important step for folding from an unfolded chain to its compact functional form. While most of the protein folding/unfolding studies have evaluated the changes in the hydrophobic interactions during chemical denaturation, the role of hydrophilic amino acids in such processes are not discussed in detail. Here we report the role of the hydrophilic amino acids behind ethanol induced unfolding of protein. Using free energy simulations, we show that chicken villin head piece (HP-36) protein unfolds gradually in presence of water-ethanol binary mixture with increasing composition of ethanol. However, upon mutation of hydrophilic amino acids by glycine while keeping the hydrophobic amino acids intact, the compact state of the protein is found to be stable at all compositions with gradual flattening of the free energy landscape upon increasing compositions. The local environment around the protein in terms of ethanol/water number significantly differs in wild type protein compared to the mutated protein. The calculated Wyman-Tanford preferential binding coefficient of ethanol for wild type protein reveals that a greater number of cosolutes (here ethanol) bind to the unfolded state compared to its folded state. However, no significant increase in binding coefficient of ethanol at the unfolded state is found for mutated protein. Local-bulk partition coefficient calculation also suggests similar scenarios. Our results reveal that the weakening of hydrophobic interactions in aqueous ethanol solution along with larger preferential binding of ethanol to the unfolded state mediated by hydrophilic amino acids combinedly helps unfolding of protein in aqueous ethanol solution.
Collapse
Affiliation(s)
- Ritaban Halder
- School of Chemical Sciences, Indian Association for the cultivation of Science, Jadavpur, Kolkata, West Bengal, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the cultivation of Science, Jadavpur, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Disentangling the role of solvent polarity and protein solvation in folding and self-assembly of α-lactalbumin. J Colloid Interface Sci 2020; 561:749-761. [DOI: 10.1016/j.jcis.2019.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
|
9
|
Chakravorty A, Jia Z, Peng Y, Tajielyato N, Wang L, Alexov E. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents. Front Mol Biosci 2018; 5:25. [PMID: 29637074 PMCID: PMC5881404 DOI: 10.3389/fmolb.2018.00025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/05/2018] [Indexed: 12/04/2022] Open
Abstract
Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant) from the solvent phase (high dielectric constant). Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.
Collapse
Affiliation(s)
- Arghya Chakravorty
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC, United States
| | - Zhe Jia
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC, United States
| | - Yunhui Peng
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC, United States
| | - Nayere Tajielyato
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC, United States
| | - Lisi Wang
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC, United States
| |
Collapse
|
10
|
Dos Remedios C. A review and summary of the contents of biophysical reviews volume 8, 2016. Biophys Rev 2017; 9:1-4. [PMID: 28510044 DOI: 10.1007/s12551-017-0249-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 12/12/2022] Open
|