1
|
Kobayashi N, Arai R. Protein Cages and Nanostructures Constructed from Protein Nanobuilding Blocks. Methods Mol Biol 2023; 2671:79-94. [PMID: 37308639 DOI: 10.1007/978-1-0716-3222-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cages and nanostructures are promising biocompatible medical materials, such as vaccines and drug carriers. Recent advances in designed protein nanocages and nanostructures have opened up cutting-edge applications in the fields of synthetic biology and biopharmaceuticals. A simple approach for constructing self-assembling protein nanocages and nanostructures is the design of a fusion protein composed of two different proteins forming symmetric oligomers. In this chapter, we describe the design and methods of protein nanobuilding blocks (PN-Blocks) using a dimeric de novo protein WA20 to construct self-assembling protein cages and nanostructures. A protein nanobuilding block (PN-Block), WA20-foldon, was developed by fusing an intermolecularly folded dimeric de novo protein WA20 and a trimeric foldon domain from bacteriophage T4 fibritin. The WA20-foldon self-assembled into several oligomeric nanoarchitectures in multiples of 6-mer. De novo extender protein nanobuilding blocks (ePN-Blocks) were also developed by fusing tandemly two WA20 with various linkers, to construct self-assembling cyclized and extended chain-like nanostructures. These PN-Blocks would be useful for the construction of self-assembling protein cages and nanostructures and their potential applications in the future.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Ueda, Nagano, Japan.
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
| |
Collapse
|
2
|
Porphyrin zirconium-based MOF dispersed single Pt atom for electrocatalytic sensing levodopa. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Boral A, Khamaru M, Mitra D. Designing synthetic transcription factors: A structural perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:245-287. [PMID: 35534109 DOI: 10.1016/bs.apcsb.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this chapter, we discuss different design strategies of synthetic proteins, especially synthetic transcription factors. Design and engineering of synthetic transcription factors is particularly relevant for the need-based manipulation of gene expression. With recent advances in structural biology techniques and with the emergence of other precision biochemical/physical tools, accurate knowledge on structure-function relations is increasingly becoming available. Besides discussing the underlying principles of design, we go through individual cases, especially those involving four major groups of transcription factors-basic leucine zippers, zinc fingers, helix-turn-helix and homeodomains. We further discuss how synthetic biology can come together with structural biology to alter the genetic blueprint of life.
Collapse
Affiliation(s)
- Aparna Boral
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Madhurima Khamaru
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Devrani Mitra
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Self-Assembling Lectin Nano-Block Oligomers Enhance Binding Avidity to Glycans. Int J Mol Sci 2022; 23:ijms23020676. [PMID: 35054861 PMCID: PMC8775495 DOI: 10.3390/ijms23020676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Lectins, carbohydrate-binding proteins, are attractive biomolecules for medical and biotechnological applications. Many lectins have multiple carbohydrate recognition domains (CRDs) and strongly bind to specific glycans through multivalent binding effect. In our previous study, protein nano-building blocks (PN-blocks) were developed to construct self-assembling supramolecular nanostructures by linking two oligomeric proteins. A PN-block, WA20-foldon, constructed by fusing a dimeric four-helix bundle de novo protein WA20 to a trimeric foldon domain of T4 phage fibritin, self-assembled into several types of polyhedral nanoarchitectures in multiples of 6-mer. Another PN-block, the extender PN-block (ePN-block), constructed by tandemly joining two copies of WA20, self-assembled into cyclized and extended chain-type nanostructures. This study developed novel functional protein nano-building blocks (lectin nano-blocks) by fusing WA20 to a dimeric lectin, Agrocybe cylindracea galectin (ACG). The lectin nano-blocks self-assembled into various oligomers in multiples of 2-mer (dimer, tetramer, hexamer, octamer, etc.). The mass fractions of each oligomer were changed by the length of the linkers between WA20 and ACG. The binding avidity of the lectin nano-block oligomers to glycans was significantly increased through multivalent effects compared with that of the original ACG dimer. Lectin nano-blocks with high avidity will be useful for various applications, such as specific cell labeling.
Collapse
|
5
|
Obata J, Kawakami N, Tsutsumi A, Nasu E, Miyamoto K, Kikkawa M, Arai R. Icosahedral 60-meric porous structure of designed supramolecular protein nanoparticle TIP60. Chem Commun (Camb) 2021; 57:10226-10229. [PMID: 34523636 DOI: 10.1039/d1cc03114g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supramolecular protein nanoparticles and nanocages have potential in a broad range of applications. Recently, we developed a uniform supramolecular protein nanoparticle, TIP60, symmmetrically self-assembled from fusion proteins of a pentameric Sm-like protein and a dimeric MyoX-coil domain. Herein, we report the icosahedral 60-meric structure of TIP60 solved using single-particle cryo-electron microscopy. Interestingly, the structure revealed 20 regular-triangle-like pores on the surface. TIP60 and its mutants have many modifiable sites on their exterior and interior surfaces. The TIP60 architecture will be useful in the development of biomedical and biochemical nanoparticles/nanocages for future applications.
Collapse
Affiliation(s)
- Junya Obata
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Erika Nasu
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan. .,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
6
|
Irumagawa S, Kobayashi K, Saito Y, Miyata T, Umetsu M, Kameda T, Arai R. Rational thermostabilisation of four-helix bundle dimeric de novo proteins. Sci Rep 2021; 11:7526. [PMID: 33824364 PMCID: PMC8024369 DOI: 10.1038/s41598-021-86952-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
The stability of proteins is an important factor for industrial and medical applications. Improving protein stability is one of the main subjects in protein engineering. In a previous study, we improved the stability of a four-helix bundle dimeric de novo protein (WA20) by five mutations. The stabilised mutant (H26L/G28S/N34L/V71L/E78L, SUWA) showed an extremely high denaturation midpoint temperature (Tm). Although SUWA is a remarkably hyperstable protein, in protein design and engineering, it is an attractive challenge to rationally explore more stable mutants. In this study, we predicted stabilising mutations of WA20 by in silico saturation mutagenesis and molecular dynamics simulation, and experimentally confirmed three stabilising mutations of WA20 (N22A, N22E, and H86K). The stability of a double mutant (N22A/H86K, rationally optimised WA20, ROWA) was greatly improved compared with WA20 (ΔTm = 10.6 °C). The model structures suggested that N22A enhances the stability of the α-helices and N22E and H86K contribute to salt-bridge formation for protein stabilisation. These mutations were also added to SUWA and improved its Tm. Remarkably, the most stable mutant of SUWA (N22E/H86K, rationally optimised SUWA, ROSA) showed the highest Tm (129.0 °C). These new thermostable mutants will be useful as a component of protein nanobuilding blocks to construct supramolecular protein complexes.
Collapse
Affiliation(s)
- Shin Irumagawa
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
| | - Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, 169-8555, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Takeshi Miyata
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan
| | - Ryoichi Arai
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan.
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano, 390-8621, Japan.
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
7
|
Crnković A, Srnko M, Anderluh G. Biological Nanopores: Engineering on Demand. Life (Basel) 2021; 11:life11010027. [PMID: 33466427 PMCID: PMC7824896 DOI: 10.3390/life11010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Nanopore-based sensing is a powerful technique for the detection of diverse organic and inorganic molecules, long-read sequencing of nucleic acids, and single-molecule analyses of enzymatic reactions. Selected from natural sources, protein-based nanopores enable rapid, label-free detection of analytes. Furthermore, these proteins are easy to produce, form pores with defined sizes, and can be easily manipulated with standard molecular biology techniques. The range of possible analytes can be extended by using externally added adapter molecules. Here, we provide an overview of current nanopore applications with a focus on engineering strategies and solutions.
Collapse
|
8
|
Arai R. Design of helical linkers for fusion proteins and protein-based nanostructures. Methods Enzymol 2020; 647:209-230. [PMID: 33482989 DOI: 10.1016/bs.mie.2020.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The construction of recombinant fusion/chimeric proteins has been widely used for expression of soluble proteins and protein purification in a variety of fields of protein engineering and biotechnology. Fusion proteins are constructed by the linking of two protein domains with a peptide linker. The selection of a linker sequence is important for the construction of stable and bioactive fusion proteins. Empirically designed linkers are generally classified into two categories according to their structural features: flexible linkers and rigid linkers. Rigid linkers with the α-helix-forming sequences A(EAAAK)nA (n=2-5) were first designed about two decades ago to control the distance between two protein domains and to reduce their interference. Thereafter, the helical linkers have been applied to the construction of many fusion proteins to improve expression and bioactivity. In addition, the design of fusion proteins that self-assemble into supramolecular complexes is useful for nanobiotechnology and synthetic biology. A protein that forms a self-assembling oligomer was fused by a rigid helical linker to another protein that forms another self-assembling oligomer, and the fusion protein symmetrically self-assembled into a designed protein nanoparticle or nanomaterial. Moreover, to construct chain-like polymeric nanostructures, extender protein nanobuilding blocks were designed by tandemly fusing two dimeric de novo proteins with helical or flexible linkers. The linker design of fusion proteins can affect conformation and dynamics of self-assembling nanostructures. The present review and methods focus on useful helical linkers to construct bioactive fusion proteins and protein-based nanostructures.
Collapse
Affiliation(s)
- Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Ueda, Nagano, Japan; Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
| |
Collapse
|
9
|
Quevedo DF, Lentz CJ, Coll de Peña A, Hernandez Y, Habibi N, Miki R, Lahann J, Lapizco-Encinas BH. Electrokinetic characterization of synthetic protein nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1556-1567. [PMID: 33134000 PMCID: PMC7590587 DOI: 10.3762/bjnano.11.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/29/2020] [Indexed: 05/11/2023]
Abstract
The application of nanoparticle in medicine is promising for the treatment of a wide variety of diseases. However, the slow progress in the field has resulted in relatively few therapies being translated into the clinic. Anisotropic synthetic protein nanoparticles (ASPNPs) show potential as a next-generation drug-delivery technology, due to their biocompatibility, biodegradability, and functionality. Even though ASPNPs have the potential to be used in a variety of applications, such as in the treatment of glioblastoma, there is currently no high-throughput technology for the processing of these particles. Insulator-based electrokinetics employ microfluidics devices that rely on electrokinetic principles to manipulate micro- and nanoparticles. These miniaturized devices can selectively trap and enrich nanoparticles based on their material characteristics, and subsequently release them, which allows for particle sorting and processing. In this study, we use insulator-based electrokinetic (EK) microdevices to characterize ASPNPs. We found that anisotropy strongly influences electrokinetic particle behavior by comparing compositionally identical anisotropic and non-anisotropic SPNPs. Additionally, we were able to estimate the empirical electrokinetic equilibrium parameter (eE EEC) for all SPNPs. This particle-dependent parameter can allow for the design of various separation and purification processes. These results show how promising the insulator-based EK microdevices are for the analysis and purification of clinically relevant SPNPs.
Collapse
Affiliation(s)
- Daniel F Quevedo
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Cody J Lentz
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| | - Adriana Coll de Peña
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| | - Yazmin Hernandez
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Nahal Habibi
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Rikako Miki
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Biomedical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
- Chemical Engineering, University of Michigan - Ann Arbor, Ann Arbor MI, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester NY, USA
| |
Collapse
|
10
|
Quevedo DF, Habibi N, Gregory JV, Hernandez Y, Brown TD, Miki R, Plummer BN, Rahmani S, Raymond JE, Mitragotri S, Lahann J. Multifunctional Synthetic Protein Nanoparticles via Reactive Electrojetting. Macromol Rapid Commun 2020; 41:e2000425. [PMID: 32974989 DOI: 10.1002/marc.202000425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Protein nanoparticles are a promising approach for nanotherapeutics, as proteins combine versatile chemical and biological function with controlled biodegradability. In this work, the development of an adaptable synthesis method is presented for synthetic protein nanoparticles (SPNPs) based on reactive electrojetting. In contrast to past work with electrohydrodynamic cojetting using inert polymers, the jetting solutions are comprised of proteins and chemically activated macromers, designed to react with each other during the processing step, to form insoluble nanogel particles. SPNPs made from a variety of different proteins, such as transferrin, insulin, or hemoglobin, are stable and uniform under physiological conditions and maintain monodisperse sizes of around 200 nm. SPNPs comprised of transferrin and a disulfide containing macromer are stimuli-responsive, and serve as markers of oxidative stress within HeLa cells. Beyond isotropic SPNPs, bicompartmental nanoparticles containing human serum albumin and transferrin in two distinct hemispheres are prepared via reactive electrojetting. This novel platform provides access to a novel class of versatile protein particles with nanoscale architectures that i) can be made from a variety of proteins and macromers, ii) have tunable biological responses, and iii) can be multicompartmental, a prerequisite for controlled release of multiple drugs.
Collapse
Affiliation(s)
- Daniel F Quevedo
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nahal Habibi
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason V Gregory
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yazmin Hernandez
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tyler D Brown
- Wyss Institute of Biologically Inspired Engineering and John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Rikako Miki
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bradley N Plummer
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sahar Rahmani
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samir Mitragotri
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Wyss Institute of Biologically Inspired Engineering and John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
11
|
Martin-Yken H. Yeast-Based Biosensors: Current Applications and New Developments. BIOSENSORS 2020; 10:E51. [PMID: 32413968 PMCID: PMC7277604 DOI: 10.3390/bios10050051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
Biosensors are regarded as a powerful tool to detect and monitor environmental contaminants, toxins, and, more generally, organic or chemical markers of potential threats to human health. They are basically composed of a sensor part made up of either live cells or biological active molecules coupled to a transducer/reporter technological element. Whole-cells biosensors may be based on animal tissues, bacteria, or eukaryotic microorganisms such as yeasts and microalgae. Although very resistant to adverse environmental conditions, yeasts can sense and respond to a wide variety of stimuli. As eukaryotes, they also constitute excellent cellular models to detect chemicals and organic contaminants that are harmful to animals. For these reasons, combined with their ease of culture and genetic modification, yeasts have been commonly used as biological elements of biosensors since the 1970s. This review aims first at giving a survey on the different types of yeast-based biosensors developed for the environmental and medical domains. We then present the technological developments currently undertaken by academic and corporate scientists to further drive yeasts biosensors into a new era where the biological element is optimized in a tailor-made fashion by in silico design and where the output signals can be recorded or followed on a smartphone.
Collapse
Affiliation(s)
- Helene Martin-Yken
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR 792 Toulouse Biotechnology Institute (TBI), 31400 Toulouse, France; ; Tel.: +689-89-52-31-88
- Institut de Recherche pour le Développement (IRD), Faa’a, 98702 Tahiti, French Polynesia
- Unite Mixte de Recherche n°241 Ecosystemes Insulaires et Oceaniens, Université de la Polynésie Française, Faa’a, 98702 Tahiti, French Polynesia
- Laboratoire de Recherche sur les Biotoxines Marines, Institut Louis Malardé, Papeete, 98713 Tahiti, French Polynesia
| |
Collapse
|
12
|
Habibi N, Quevedo DF, Gregory JV, Lahann J. Emerging methods in therapeutics using multifunctional nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1625. [DOI: 10.1002/wnan.1625] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/16/2019] [Accepted: 02/04/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Daniel F. Quevedo
- Biointerfaces Institute, Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA
| | - Jason V. Gregory
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Joerg Lahann
- Biointerfaces Institute, Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Materials Science and Engineering University of Michigan Ann Arbor Michigan USA
- Biointerfaces Institute, Department of Macromolecular Science and Engineering University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
13
|
Kimura N, Mochizuki K, Umezawa K, Hecht MH, Arai R. Hyperstable De Novo Protein with a Dimeric Bisecting Topology. ACS Synth Biol 2020; 9:254-259. [PMID: 31951376 DOI: 10.1021/acssynbio.9b00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, we designed and assembled protein nanobuilding blocks (PN-Blocks) from an intermolecularly folded dimeric de novo protein called WA20. Using this dimeric 4-helix bundle, we constructed a series of self-assembling supramolecular nanostructures including polyhedra and chain-type complexes. Here we describe the stabilization of WA20 by designing mutations that stabilize the helices and hydrophobic core. The redesigned proteins denature with substantially higher midpoints, with the most stable variant, called Super WA20 (SUWA), displaying an extremely high midpoint (Tm = 122 °C), much higher than the Tm of WA20 (75 °C). The crystal structure of SUWA reveals an intermolecularly folded dimer with bisecting U topology, similar to the parental WA20 structure, with two long α-helices of a protomer intertwined with the helices of another protomer. Molecular dynamics simulations demonstrate that the redesigned hydrophobic core in the center of SUWA significantly suppresses the deformation of helices observed in the same region of WA20, suggesting this is a critical factor stabilizing the SUWA structure. This hyperstable de novo protein is expected to be useful as nanoscale pillars of PN-Block components in new types of self-assembling nanoarchitectures.
Collapse
Affiliation(s)
- Naoya Kimura
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Kenji Mochizuki
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
- Institute for Fiber Engineering, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Koji Umezawa
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Michael H. Hecht
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
- Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
14
|
Meinke JL, Simon AJ, Wagner DT, Morrow BR, You S, Ellington AD, Keatinge-Clay AT. Employing 25-Residue Docking Motifs from Modular Polyketide Synthases as Orthogonal Protein Connectors. ACS Synth Biol 2019; 8:2017-2024. [PMID: 31469555 DOI: 10.1021/acssynbio.9b00047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteins of trans-acyltransferase modular polyketide synthases (PKSs) self-organize into assembly lines, enabling the multienzyme biosynthesis of complex organic molecules. Docking domains comprised of ∼25 residues at the C- and N-termini of these polypeptides (CDDs and NDDs) help drive this association through the formation of four-helix bundles. Molecular connectors like these are desired in synthetic contexts, such as artificial biocatalytic systems and biomaterials, to orthogonally join proteins. Here, the ability of six CDD/NDD pairs to link non-PKS proteins is examined using green fluorescent protein (GFP) variants. As observed through size-exclusion chromatography and Förster resonance energy transfer (FRET), matched but not mismatched pairs of Venus+CDD and NDD+mTurquoise2 fusion proteins associate with low micromolar affinities.
Collapse
|
15
|
NewBG: A surrogate corticosteroid-binding globulin with an unprecedentedly high ligand release efficacy. J Struct Biol 2019; 207:169-182. [DOI: 10.1016/j.jsb.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 11/22/2022]
|
16
|
Ross JF, Wildsmith GC, Johnson M, Hurdiss DL, Hollingsworth K, Thompson RF, Mosayebi M, Trinh CH, Paci E, Pearson AR, Webb ME, Turnbull WB. Directed Assembly of Homopentameric Cholera Toxin B-Subunit Proteins into Higher-Order Structures Using Coiled-Coil Appendages. J Am Chem Soc 2019; 141:5211-5219. [PMID: 30856321 PMCID: PMC6449800 DOI: 10.1021/jacs.8b11480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The self-assembly
of proteins into higher order structures is ubiquitous
in living systems. It is also an essential process for the bottom-up
creation of novel molecular architectures and devices for synthetic
biology. However, the complexity of protein–protein interaction
surfaces makes it challenging to mimic natural assembly processes
in artificial systems. Indeed, many successful computationally designed
protein assemblies are prescreened for “designability”,
limiting the choice of components. Here, we report a simple and pragmatic
strategy to assemble chosen multisubunit proteins into more complex
structures. A coiled-coil domain appended to one face of the pentameric
cholera toxin B-subunit (CTB) enabled the ordered assembly of tubular
supra-molecular complexes. Analysis of a tubular structure determined
by X-ray crystallography has revealed a hierarchical assembly process
that displays features reminiscent of the polymorphic assembly of
polyomavirus proteins. The approach provides a simple and straightforward
method to direct the assembly of protein building blocks which present
either termini on a single face of an oligomer. This scaffolding approach
can be used to generate bespoke supramolecular assemblies of functional
proteins. Additionally, structural resolution of the scaffolded assemblies
highlight “native-state” forced protein–protein
interfaces, which may prove useful as starting conformations for future
computational design.
Collapse
Affiliation(s)
- James F Ross
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Gemma C Wildsmith
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Michael Johnson
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Daniel L Hurdiss
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Kristian Hollingsworth
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Majid Mosayebi
- School of Mathematics , University of Bristol , Bristol BS8 1TW , United Kingdom.,BrisSynBio, Life Sciences Building , University of Bristol , Bristol BS8 1TQ , United Kingdom
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Arwen R Pearson
- Institute for Nanostructure and Solid State Physics , Universität Hamburg , Hamburg D-22761 , Germany
| | - Michael E Webb
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - W Bruce Turnbull
- Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom.,School of Chemistry , University of Leeds , Leeds LS2 9JT , United Kingdom
| |
Collapse
|
17
|
Hirabayashi J, Arai R. Lectin engineering: the possible and the actual. Interface Focus 2019; 9:20180068. [PMID: 30842871 DOI: 10.1098/rsfs.2018.0068] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Lectins are a widespread group of sugar-binding proteins occurring in all types of organisms including animals, plants, bacteria, fungi and even viruses. According to a recent report, there are more than 50 lectin scaffolds (∼Pfam), for which three-dimensional structures are known and sugar-binding functions have been confirmed in the literature, which far exceeds our view in the twentieth century (Fujimoto et al. 2014 Methods Mol. Biol. 1200, 579-606 (doi:10.1007/978-1-4939-1292-6_46)). This fact suggests that new lectins will be discovered either by a conventional screening approach or just by chance. It is also expected that new lectin domains including those found in enzymes as carbohydrate-binding modules will be generated in the future through evolution, although this has never been attempted on an experimental level. Based on the current state of the art, various methods of lectin engineering are available, by which lectin specificity and/or stability of a known lectin scaffold can be improved. However, the above observation implies that any protein scaffold, including those that have never been described as lectins, may be modified to acquire a sugar-binding function. In this review, possible approaches to confer sugar-binding properties on synthetic proteins and peptides are described.
Collapse
Affiliation(s)
- Jun Hirabayashi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.,Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, 8304, Minamiminowa, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|
18
|
Santambrogio C, Natalello A, Brocca S, Ponzini E, Grandori R. Conformational Characterization and Classification of Intrinsically Disordered Proteins by Native Mass Spectrometry and Charge‐State Distribution Analysis. Proteomics 2018; 19:e1800060. [DOI: 10.1002/pmic.201800060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Carlo Santambrogio
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Antonino Natalello
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Stefania Brocca
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Erika Ponzini
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Rita Grandori
- Department of Biotechnology and BiosciencesUniversity of Milano‐Bicocca Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
19
|
Kawakami N, Kondo H, Matsuzawa Y, Hayasaka K, Nasu E, Sasahara K, Arai R, Miyamoto K. Design of Hollow Protein Nanoparticles with Modifiable Interior and Exterior Surfaces. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Norifumi Kawakami
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Hiroki Kondo
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Yuki Matsuzawa
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Kaoru Hayasaka
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Erika Nasu
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Kenji Sasahara
- Department of Applied Biology; Faculty of Textile Science and Technology; Shinshu University; Ueda Nagano 386-8567 Japan
| | - Ryoichi Arai
- Department of Applied Biology; Faculty of Textile Science and Technology; Shinshu University; Ueda Nagano 386-8567 Japan
- Department of Supramolecular Complexes; Research Center for Fungal and Microbial Dynamism; Shinshu University; Minamiminowa Nagano 399-4598 Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| |
Collapse
|
20
|
Kawakami N, Kondo H, Matsuzawa Y, Hayasaka K, Nasu E, Sasahara K, Arai R, Miyamoto K. Design of Hollow Protein Nanoparticles with Modifiable Interior and Exterior Surfaces. Angew Chem Int Ed Engl 2018; 57:12400-12404. [DOI: 10.1002/anie.201805565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/03/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Norifumi Kawakami
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Hiroki Kondo
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Yuki Matsuzawa
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Kaoru Hayasaka
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Erika Nasu
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| | - Kenji Sasahara
- Department of Applied Biology; Faculty of Textile Science and Technology; Shinshu University; Ueda Nagano 386-8567 Japan
| | - Ryoichi Arai
- Department of Applied Biology; Faculty of Textile Science and Technology; Shinshu University; Ueda Nagano 386-8567 Japan
- Department of Supramolecular Complexes; Research Center for Fungal and Microbial Dynamism; Shinshu University; Minamiminowa Nagano 399-4598 Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics; Faculty of Science and Technology; Keio University; 3-14-1 Hiyoshi, Kohoku-ku Yokohama Kanagawa 223-8522 Japan
| |
Collapse
|
21
|
Kobayashi N, Inano K, Sasahara K, Sato T, Miyazawa K, Fukuma T, Hecht MH, Song C, Murata K, Arai R. Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks. ACS Synth Biol 2018; 7:1381-1394. [PMID: 29690759 DOI: 10.1021/acssynbio.8b00007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of novel proteins that self-assemble into supramolecular complexes is important for development in nanobiotechnology and synthetic biology. Recently, we designed and created a protein nanobuilding block (PN-Block), WA20-foldon, by fusing an intermolecularly folded dimeric de novo WA20 protein and a trimeric foldon domain of T4 phage fibritin (Kobayashi et al., J. Am. Chem. Soc. 2015, 137, 11285). WA20-foldon formed several types of self-assembling nanoarchitectures in multiples of 6-mers, including a barrel-like hexamer and a tetrahedron-like dodecamer. In this study, to construct chain-like polymeric nanostructures, we designed de novo extender protein nanobuilding blocks (ePN-Blocks) by tandemly fusing two de novo binary-patterned WA20 proteins with various linkers. The ePN-Blocks with long helical linkers or flexible linkers were expressed in soluble fractions of Escherichia coli, and the purified ePN-Blocks were analyzed by native PAGE, size exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray scattering (SAXS), and transmission electron microscopy. These results suggest formation of various structural homo-oligomers. Subsequently, we reconstructed hetero-oligomeric complexes from extender and stopper PN-Blocks by denaturation and refolding. The present SEC-MALS and SAXS analyses show that extender and stopper PN-Block (esPN-Block) heterocomplexes formed different types of extended chain-like conformations depending on their linker types. Moreover, atomic force microscopy imaging in liquid suggests that the esPN-Block heterocomplexes with metal ions further self-assembled into supramolecular nanostructures on mica surfaces. Taken together, the present data demonstrate that the design and construction of self-assembling PN-Blocks using de novo proteins is a useful strategy for building polymeric nanoarchitectures of supramolecular protein complexes.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | - Takaaki Sato
- Center for Energy and Environmental Science, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Nagano 380-8553, Japan
| | - Keisuke Miyazawa
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Fukuma
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Ryoichi Arai
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
- Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
22
|
Hall D, Takagi J, Nakamura H. Foreword to 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', a special issue in Honour of Fumio Arisaka's 70th birthday. Biophys Rev 2018; 10:105-129. [PMID: 29500796 PMCID: PMC5899743 DOI: 10.1007/s12551-018-0401-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
This issue of Biophysical Reviews, titled 'Multiscale structural biology: biophysical principles and mechanisms underlying the action of bio-nanomachines', is a collection of articles dedicated in honour of Professor Fumio Arisaka's 70th birthday. Initially, working in the fields of haemocyanin and actin filament assembly, Fumio went on to publish important work on the elucidation of structural and functional aspects of T4 phage biology. As his career has transitioned levels of complexity from proteins (hemocyanin) to large protein complexes (actin) to even more massive bio-nanomachinery (phage), it is fitting that the subject of this special issue is similarly reflective of his multiscale approach to structural biology. This festschrift contains articles spanning biophysical structure and function from the bio-molecular through to the bio-nanomachine level.
Collapse
Affiliation(s)
- Damien Hall
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
- Research School of Chemistry, Australian National University, Acton, ACT 2601 Australia
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-1- Yamada-oka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|