1
|
Kovács ZJ, Ecsédi P, Harami GM, Pálinkás J, Botros M, Mahmudova L, Katran V, Érfalvy D, Cervenak M, Smeller L, Kovács M. Fine-tuned interactions between globular and disordered regions of single-stranded DNA binding (SSB) protein are required for dynamic condensation under physiological conditions. Protein Sci 2025; 34:e70109. [PMID: 40143738 PMCID: PMC11947617 DOI: 10.1002/pro.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/25/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025]
Abstract
Increasing evidence points to the importance of liquid-liquid phase separation (LLPS)-driven protein condensation in both eukaryotic and bacterial cell physiology. The formation of condensates may involve interactions between both structured (globular) domains and intrinsically disordered protein regions and requires multivalency that is often brought about by oligomerization. Here we dissect such contributions by assessing engineered variants of bacterial (Escherichia coli) single-stranded DNA binding (SSB) protein whose condensation has recently been implicated in bacterial genome metabolism. A truncated SSB variant (SSBdC, lacking the conserved C-terminal peptide (CTP)) was used to assess the importance of interactions between SSB's globular oligonucleotide/oligosaccharide binding (OB) domain and the CTP. We show that OB-CTP interactions are essential for dynamic condensation in physiological (crowded, glutamate-rich) environments. Via assessment of a protein variant (SSBH55Y) from the known thermosensitive ssb-1 mutant, we also show that the perturbation of OB-OB contacts significantly impairs the stability of SSB tetramers and results in thermally induced protein aggregation, underscoring the importance of multivalence brought about by stereospecific contacts. Our data point to adaptive fine-tuning of SSB interactions to physiological condensation and demonstrate that SSB represents a versatile system for selective engineering of condensation-driving interactions between globular and disordered regions.
Collapse
Affiliation(s)
- Zoltán J. Kovács
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
- HUN‐REN–ELTE Motor Pharmacology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Péter Ecsédi
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Gábor M. Harami
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - János Pálinkás
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Mina Botros
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Lamiya Mahmudova
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Viktoria Katran
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Dávid Érfalvy
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| | - Miklós Cervenak
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - László Smeller
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Mihály Kovács
- ELTE‐MTA “Momentum” Motor Enzymology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
- HUN‐REN–ELTE Motor Pharmacology Research Group, Department of BiochemistryEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
2
|
Tsoi PS, Lucas L, Rhoades D, Ferreon JC, Ferreon ACM. Electrostatic Effects on Tau Nanocondensates. Biomolecules 2025; 15:406. [PMID: 40149942 PMCID: PMC11940141 DOI: 10.3390/biom15030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Biomolecular condensates (BMCs) are membrane-less protein compartments with physiological and pathological relevance. The formation of BMCs is driven by a process known as liquid-liquid phase separation (LLPS), a field that has largely focused on the study of micron-sized condensates. However, there have been recent studies showing that proteins that undergo LLPS also form nanometer-sized condensates. These nanometer-sized condensates, or nanocondensates, are distinct from microcondensates and potentially exhibit more relevance in cell biology. The field of nanocondensate research is in its infancy, with limited biophysical studies of these structures. Here, we studied condensate formation and dissolution of wild-type and disease-linked (hyperphosphorylated and missense mutated) Tau. We investigated the effects of solution condition modulation on nanocondensate formation and dissolution, and observed that Tau condensation is strongly regulated by electrostatic forces and less affected by hydrophobic disruption. We observed that all three Tau variants studied shared condensate formation properties when in solution conditions with the same ionic strength. However, hyperphosphorylated and missense-mutated Tau exhibited higher resistance to dissolution compared to wild-type Tau. This study uncovers additional distinctions between different types of condensates, which provides further insight into the distinctions between physiological and pathological condensates.
Collapse
Affiliation(s)
- Phoebe S. Tsoi
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; (P.S.T.); (L.L.)
| | - Lathan Lucas
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; (P.S.T.); (L.L.)
| | - Derek Rhoades
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA;
| | - Josephine C. Ferreon
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; (P.S.T.); (L.L.)
| | - Allan Chris M. Ferreon
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; (P.S.T.); (L.L.)
| |
Collapse
|
3
|
Arora L, Bhowmik D, Sarkar S, Sarbahi A, Rai SK, Mukhopadhyay S. Chaperone-Mediated Heterotypic Phase Separation Prevents the Amyloid Formation of the Pathological Y145Stop Prion Protein Variant. J Mol Biol 2025; 437:168955. [PMID: 39826709 DOI: 10.1016/j.jmb.2025.168955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates formed via phase separation of proteins and nucleic acids are crucial for the spatiotemporal regulation of a diverse array of essential cellular functions and the maintenance of cellular homeostasis. However, aberrant liquid-to-solid phase transitions of such condensates are associated with several fatal human diseases. Such dynamic membraneless compartments can contain a range of molecular chaperones that can regulate the phase behavior of proteins involved in the formation of these biological condensates. Here, we show that a heat shock protein 40 (Hsp40), Ydj1, exhibits a holdase activity by potentiating the phase separation of a disease-associated stop codon mutant of the prion protein (Y145Stop) either by recruitment into Y145Stop condensates or via Y145Stop-Ydj1 two-component heterotypic phase separation that arrests the conformational conversion of Y145Stop into amyloid fibrils. Utilizing site-directed mutagenesis, multicolor fluorescence imaging, single-droplet steady-state and picosecond time-resolved fluorescence anisotropy, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy, we delineate the complex network of interactions that govern the heterotypic phase separation of Y145Stop and Ydj1. We also show that the properties of such heterotypic condensates can further be tuned by RNA that promotes the formation of multicomponent multiphasic protein-RNA condensates. Our vibrational Raman spectroscopy results in conjunction with atomic force microscopy imaging reveal that Ydj1 effectively redirects the self-assembly of Y145Stop towards a dynamically-arrested non-amyloidogenic pathway, preventing the formation of typical amyloid fibrils. Our findings underscore the importance of chaperone-mediated heterotypic phase separation in regulating aberrant phase transitions and amyloid formation associated with a wide range of deadly neurodegenerative diseases.
Collapse
Affiliation(s)
- Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India.
| | - Dipankar Bhowmik
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | - Snehasis Sarkar
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | - Anusha Sarbahi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | - Sandeep K Rai
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India.
| |
Collapse
|
4
|
Lucas L, Tsoi PS, Ferreon JC, Ferreon ACM. Tau Oligomers Resist Phase Separation. Biomolecules 2025; 15:336. [PMID: 40149872 PMCID: PMC11940599 DOI: 10.3390/biom15030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Tau is a microtubule-associated protein that undergoes liquid-liquid phase separation (LLPS) to form condensates under physiological conditions, facilitating microtubule stabilization and intracellular transport. LLPS has also been implicated in pathological Tau aggregation, which contributes to tauopathies such as Alzheimer's disease. While LLPS is known to promote Tau aggregation, the relationship between Tau's structural states and its phase separation behavior remains poorly defined. Here, we examine how oligomerization modulates Tau LLPS and uncover key distinctions between monomeric, oligomeric, and amyloidogenic Tau species. Using dynamic light scattering and fluorescence microscopy, we monitored oligomer formation over time and assessed oligomeric Tau's ability to undergo LLPS. We found that Tau monomers readily phase separate and form condensates. As oligomerization progresses, Tau's propensity to undergo LLPS diminishes, with oligomers still being able to phase separate, albeit with reduced efficiency. Interestingly, oligomeric Tau is recruited into condensates formed with 0-day-aged Tau, with this recruitment depending on the oligomer state of maturation. Early-stage, Thioflavin T (ThT)-negative oligomers co-localize with 0-day-aged Tau condensates, whereas ThT-positive oligomers resist condensate recruitment entirely. This study highlights a dynamic interplay between Tau LLPS and aggregation, providing insight into how Tau's structural and oligomeric states influence its pathological and functional roles. These findings underscore the need to further explore LLPS as a likely modulator of Tau pathogenesis and distinct pathogenic oligomers as viable therapeutic targets in tauopathies.
Collapse
Affiliation(s)
| | | | - Josephine C. Ferreon
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; (L.L.); (P.S.T.)
| | - Allan Chris M. Ferreon
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; (L.L.); (P.S.T.)
| |
Collapse
|
5
|
Kawagoe S, Matsusaki M, Mabuchi T, Ogasawara Y, Watanabe K, Ishimori K, Saio T. Mechanistic Insights Into Oxidative Response of Heat Shock Factor 1 Condensates. JACS AU 2025; 5:606-617. [PMID: 40017748 PMCID: PMC11863153 DOI: 10.1021/jacsau.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 03/01/2025]
Abstract
Heat shock factor 1 (Hsf1), a hub protein in the stress response and cell fate decisions, senses the strength, type, and duration of stress to balance cell survival and death through an unknown mechanism. Recently, changes in the physical property of Hsf1 condensates due to persistent stress have been suggested to trigger apoptosis, highlighting the importance of biological phase separation and transition in cell fate decisions. In this study, the mechanism underlying Hsf1 droplet formation and oxidative response was investigated through 3D refractive index imaging of the internal architecture, corroborated by molecular dynamics simulations and biophysical/biochemical experiments. We found that, in response to oxidative conditions, Hsf1 formed liquid condensates that suppressed its internal mobility. Furthermore, these conditions triggered the hyper-oligomerization of Hsf1, mediated by disulfide bonds and secondary structure stabilization, leading to the formation of dense core particles in the Hsf1 droplet. Collectively, these data demonstrate how the physical property of Hsf1 condensates undergoes an oxidative transition by sensing redox conditions to potentially drive cell fate decisions.
Collapse
Affiliation(s)
- Soichiro Kawagoe
- Institute
of Advanced Medical Sciences, Tokushima
University, Tokushima 770-8503, Japan
| | - Motonori Matsusaki
- Institute
of Advanced Medical Sciences, Tokushima
University, Tokushima 770-8503, Japan
| | - Takuya Mabuchi
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Institute
of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yuto Ogasawara
- Department
of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Kazunori Watanabe
- Department
of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Koichiro Ishimori
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo, Hokkaido 060-0810, Japan
| | - Tomohide Saio
- Institute
of Advanced Medical Sciences, Tokushima
University, Tokushima 770-8503, Japan
- Fujii Memorial
Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
6
|
Cheng Z, Cheng Z, Zhang Y, Zhang S. "Intrinsic disorder-protein modification-LLPS-tumor" regulatory axis: From regulatory mechanisms to precision medicine. Biochim Biophys Acta Rev Cancer 2025; 1880:189242. [PMID: 39672280 DOI: 10.1016/j.bbcan.2024.189242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Liquid-Liquid Phase Separation (LLPS) is an important mechanism for the formation of functional droplets. Protein modification is an important pathway to regulate LLPS, in which series of modifying groups realize dynamic regulation by changing the charge and spatial resistance of the modified proteins. Meanwhile, uncontrolled protein modifications associated with LLPS dysregulation are highly correlated with tumorigenesis and development, suggesting the existence of a potential regulatory axis between the three. In this review, we pioneered "protein modification-LLPS-tumor" regulatory axis and summarized protein modifications that regulate LLPS in cancer cells (including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, lactate, ADP-ribosylation, O-glycosylation, and acylation) and their associated modification mechanisms. Finally, we outline advances in precision medicine based on this regulatory axis. The aim of this review is to expand the understanding of protein modifications regulating LLPS under normal or abnormal cellular conditions and to provide possible ideas for precision therapy.
Collapse
Affiliation(s)
- Zekun Cheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zehao Cheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Yikai Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
7
|
Müller F, Christiansen H, Janke W. Nonuniversality of Aging during Phase Separation of the Two-Dimensional Long-Range Ising Model. PHYSICAL REVIEW LETTERS 2024; 133:237102. [PMID: 39714668 DOI: 10.1103/physrevlett.133.237102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/29/2024] [Indexed: 12/24/2024]
Abstract
We investigate the aging properties of phase-separation kinetics following quenches from T=∞ to a finite temperature below T_{c} of the paradigmatic two-dimensional conserved Ising model with power-law decaying long-range interactions ∼r^{-(2+σ)}. Physical aging with a power-law decay of the two-time autocorrelation function C(t,t_{w})∼(t/t_{w})^{-λ/z} is observed, displaying a complex dependence of the autocorrelation exponent λ on σ. A value of λ=3.500(26) for the corresponding nearest-neighbor model (which is recovered as the σ→∞ limit) is determined. The values of λ in the long-range regime (σ<1) are all compatible with λ≈4. In between, a continuous crossover is visible for 1≲σ≲2 with nonuniversal, σ-dependent values of λ. The performed Metropolis Monte Carlo simulations are primarily enabled by our novel algorithm for long-range interacting systems.
Collapse
|
8
|
Xu Z, Schahl A, Jolivet MD, Legrand A, Grélard A, Berbon M, Morvan E, Lagardere L, Piquemal JP, Loquet A, Germain V, Chavent M, Mongrand S, Habenstein B. Dynamic pre-structuration of lipid nanodomain-segregating remorin proteins. Commun Biol 2024; 7:1620. [PMID: 39639105 PMCID: PMC11621693 DOI: 10.1038/s42003-024-07330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Remorins are multifunctional proteins, regulating immunity, development and symbiosis in plants. When associating to the membrane, remorins sequester specific lipids into functional membrane nanodomains. The multigenic protein family contains six groups, classified upon their protein-domain composition. Membrane targeting of remorins occurs independently from the secretory pathway. Instead, they are directed into different nanodomains depending on their phylogenetic group. All family members contain a C-terminal membrane anchor and a homo-oligomerization domain, flanked by an intrinsically disordered region of variable length at the N-terminal end. We here combined molecular imaging, NMR spectroscopy, protein structure calculations and advanced molecular dynamics simulation to unveil a stable pre-structuration of coiled-coil dimers as nanodomain-targeting units, containing a tunable fuzzy coat and a bar code-like positive surface charge before membrane association. Our data suggest that remorins fold in the cytosol with the N-terminal disordered region as a structural ensemble around a dimeric anti-parallel coiled-coil core containing a symmetric interface motif reminiscent of a hydrophobic Leucine zipper. The domain geometry, the charge distribution in the coiled-coil remorins and the differences in structures and dynamics between C-terminal lipid anchors of the remorin groups provide a selective platform for phospholipid binding when encountering the membrane surface.
Collapse
Affiliation(s)
- Zeren Xu
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Adrien Schahl
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31400, Toulouse, France
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France
| | - Anthony Legrand
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Mélanie Berbon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Louis Lagardere
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, LCT, UMR7616 CNRS,75005Paris, France; Qubit Pharmaceuticals, Advanced Research Department, 75014, Paris, France
| | - Antoine Loquet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31400, Toulouse, France.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM) UMR-5200, CNRS-Univ. Bordeaux, F-33140, Villenave d'Ornon, France.
| | - Birgit Habenstein
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France.
| |
Collapse
|
9
|
Holtmannspötter AL, Machatzke C, Begemann C, Salibi E, Donau C, Späth F, Boekhoven J, Mutschler H. Regulating Nucleic Acid Catalysis Using Active Droplets. Angew Chem Int Ed Engl 2024; 63:e202412534. [PMID: 39119638 DOI: 10.1002/anie.202412534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Cells use transient membraneless organelles to regulate biological reaction networks. For example, stress granules selectively store mRNA to downregulate protein expression in response to heat or oxidative stress. Models mimicking this active behavior should be established to better understand in vivo regulation involving compartmentalization. Here we use active, complex coacervate droplets as a model for membraneless organelles to spatiotemporally control the activity of a catalytic DNA (DNAzyme). Upon partitioning into these peptide-RNA droplets, the DNAzyme unfolds and loses its ability to catalyze the cleavage of a nucleic acid strand. We can transiently pause the DNAzyme activity upon inducing droplet formation with fuel. After fuel consumption, the DNAzyme activity autonomously restarts. We envision this system could be used to up and downregulate multiple reactions in a network, helping understand the complexity of a cell's pathways. By creating a network where the DNAzyme could reciprocally regulate the droplet properties, we would have a powerful tool for engineering synthetic cells.
Collapse
Affiliation(s)
- Anna-Lena Holtmannspötter
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Corbin Machatzke
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Christian Begemann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Carsten Donau
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Fabian Späth
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
10
|
Kharel K, Tindell SJ, Kemph A, Schmidtke R, Alexander E, Lynch JA, Arkov AL. Dynamic protein assembly and architecture of the large solitary membraneless organelle during germline development in the wasp Nasonia vitripennis. Development 2024; 151:dev202877. [PMID: 39465418 DOI: 10.1242/dev.202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Throughout metazoa, germ cells assemble RNA-protein organelles (germ granules). In Drosophila ovaries, perinuclear nuage forms in the nurse cells, while compositionally similar polar granules form in the oocyte. A similar system appears to exist in the distantly related (∼350 million years) wasp Nasonia, with some surprising divergences. Nuage is similarly formed in Nasonia, except that anterior nurse cells accumulate significantly more nuage, in association with high levels of DNA double-strand breaks, suggesting that increased transposon activity anteriorly is silenced by high nuage levels. In the oocyte, the germ plasm forms a single granule that is 40 times larger than a homologous Drosophila polar granule. While conserved germ granule proteins are recruited to the oosome, they show unusual localization: Tudor protein forms a shell encapsulating the embryonic oosome, while small Oskar/Vasa/Aubergine granules coalesce interiorly. Wasp Vasa itself is unusual since it has an alternative splice form that includes a previously unreported nucleoporin-like phenylalanine-glycine repeat domain. Our work is consistent with the high degree of evolutionary plasticity of membraneless organelles, and describes a new experimental model and resources for studying biomolecular condensates.
Collapse
Affiliation(s)
- Kabita Kharel
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Samuel J Tindell
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Allie Kemph
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ryan Schmidtke
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Emma Alexander
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| |
Collapse
|
11
|
Duijs H, Kumar M, Dhiman S, Su L. Harnessing Competitive Interactions to Regulate Supramolecular "Micelle-Droplet-Fiber" Transition and Reversibility in Water. J Am Chem Soc 2024; 146:29759-29766. [PMID: 39405510 PMCID: PMC11528417 DOI: 10.1021/jacs.4c11285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
The supramolecular assembly of proteins into irreversible fibrils is often associated with diseases in which aberrant phase transitions occur. Due to the complexity of biological systems and their surrounding environments, the mechanism underlying phase separation-mediated supramolecular assembly is poorly understood, making the reversal of so-called irreversible fibrillization a significant challenge. Therefore, it is crucial to develop simple model systems that provide insights into the mechanistic process of monomers to phase-separated droplets and ordered supramolecular assemblies. Such models can help in investigating strategies to either reverse or modulate these states. Herein, we present a simple synthetic model system composed of three components, including a benzene-1,3,5-tricarboxamide-based supramolecular monomer, a surfactant, and water, to mimic the condensate pathway observed in biological systems. This highly dynamic system can undergo "micelle-droplet-fiber" transition over time and space with a concentration gradient field, regulated by competitive interactions. Importantly, manipulating these competitive interactions through guest molecules, temperature changes, and cosolvents can reverse ordered fibers into a disordered liquid or micellar state. Our model system provides new insights into the critical balance between various interactions among the three components that determine the pathway and reversibility of the process. Extending this "competitive interaction" approach from a simple model system to complex macromolecules, e.g., proteins, could open new avenues for biomedical applications, such as condensate-modifying therapeutics.
Collapse
Affiliation(s)
- Heleen Duijs
- Division
of Biotherapeutics, Leiden Academic Centre
for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mohit Kumar
- Department
of Chemistry, Johannes Gutenberg University
in Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Shikha Dhiman
- Department
of Chemistry, Johannes Gutenberg University
in Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Lu Su
- Division
of Biotherapeutics, Leiden Academic Centre
for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
12
|
Shibuya R, Kajimoto S, Yaginuma H, Ariyoshi T, Okada Y, Nakabayashi T. Nucleic Acid-Rich Stress Granules Are Not Merely Crowded Condensates: A Quantitative Raman Imaging Study. Anal Chem 2024; 96:17078-17085. [PMID: 39405087 PMCID: PMC11525929 DOI: 10.1021/acs.analchem.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Liquid droplets, formed by intracellular liquid-liquid phase separation (LLPS), are called membraneless organelles. They provide transient enzymatic reaction fields for maintaining cellular homeostasis, although they might transform into aggregates, leading to neurodegenerative diseases. To understand the nature of intracellular droplets, it is crucial to quantify the liquid droplets inside a living cell as well as to elucidate the underlying biological mechanism. In this study, we performed near-infrared fluorescence and Raman imaging to quantify chemical components inside stress granules (SGs) formed by LLPS in living cells. The Raman images reveal that the nucleic acid concentration inside the SGs was more than 20% higher than the surrounding cytoplasm, whereas the lipid concentration was lower. Quantitative Raman intensity analysis using a water Raman band as an internal standard enables in situ concentration determination of nucleic acids in the SGs and other organelles. The intensity of the biomolecular C-H bands relative to the water band indicates that the crowding environment inside the SGs depends on the stress type; under oxidative stress, the inside of the SGs was nearly identical to the outside, whereas it was sparser in hyperosmotic stressed cells, suggesting that the high concentrations of nucleic acids play a pivotal role in maintaining the environments inside the SGs. These results demonstrate that intracellular droplets are not always highly condensed.
Collapse
Affiliation(s)
- Ren Shibuya
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, Aoba-ku, Sendai 980-8578, Japan
| | - Shinji Kajimoto
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, Aoba-ku, Sendai 980-8578, Japan
- JST
PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Hideyuki Yaginuma
- Department
of Cell Biology and Physics, Universal Biology Institute and International
Research Center for Neurointelligence, The
University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory
for Cell Polarity Regulation, RIKEN Center
for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
| | - Tetsuro Ariyoshi
- Department
of Cell Biology and Physics, Universal Biology Institute and International
Research Center for Neurointelligence, The
University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory
for Cell Polarity Regulation, RIKEN Center
for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
| | - Yasushi Okada
- Department
of Cell Biology and Physics, Universal Biology Institute and International
Research Center for Neurointelligence, The
University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory
for Cell Polarity Regulation, RIKEN Center
for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
| | - Takakazu Nakabayashi
- Graduate
School of Pharmaceutical Sciences, Tohoku
University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
13
|
Ziaunys M, Sulskis D, Veiveris D, Kopustas A, Snieckute R, Mikalauskaite K, Sakalauskas A, Tutkus M, Smirnovas V. Liquid-liquid phase separation of alpha-synuclein increases the structural variability of fibrils formed during amyloid aggregation. FEBS J 2024; 291:4522-4538. [PMID: 39116032 DOI: 10.1111/febs.17244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Protein liquid-liquid phase separation (LLPS) is a rapidly emerging field of study on biomolecular condensate formation. In recent years, this phenomenon has been implicated in the process of amyloid fibril formation, serving as an intermediate step between the native protein transition into their aggregated state. The formation of fibrils via LLPS has been demonstrated for a number of proteins related to neurodegenerative disorders, as well as other amyloidoses. Despite the surge in amyloid-related LLPS studies, the influence of protein condensate formation on the end-point fibril characteristics is still far from fully understood. In this work, we compare alpha-synuclein aggregation under different conditions, which promote or negate its LLPS and examine the differences between the formed aggregates. We show that alpha-synuclein phase separation generates a wide variety of assemblies with distinct secondary structures and morphologies. The LLPS-induced structures also possess higher levels of toxicity to cells, indicating that biomolecular condensate formation may be a critical step in the appearance of disease-related fibril variants.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Darius Sulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Dominykas Veiveris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Aurimas Kopustas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Ruta Snieckute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | | | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Marijonas Tutkus
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| |
Collapse
|
14
|
Grizel AV, Gorsheneva NA, Stevenson JB, Pflaum J, Wilfling F, Rubel AA, Chernoff YO. Osmotic stress induces formation of both liquid condensates and amyloids by a yeast prion domain. J Biol Chem 2024; 300:107766. [PMID: 39276934 PMCID: PMC11736011 DOI: 10.1016/j.jbc.2024.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Liquid protein condensates produced by phase separation are involved in the spatiotemporal control of cellular functions, while solid fibrous aggregates (amyloids) are associated with diseases and/or manifest as infectious or heritable elements (prions). Relationships between these assemblies are poorly understood. The Saccharomyces cerevisiae release factor Sup35 can produce both fluid liquid-like condensates (e.g., at acidic pH) and amyloids (typically cross-seeded by other prions). We observed acidification-independent formation of Sup35-based liquid condensates in response to hyperosmotic shock in the absence of other prions, both at increased and physiological expression levels. The Sup35 prion domain, Sup35N, is both necessary and sufficient for condensate formation, while the middle domain, Sup35M antagonizes this process. Formation of liquid condensates in response to osmotic stress is conserved within yeast evolution. Notably, condensates of Sup35N/NM protein originated from the distantly related yeast Ogataea methanolica can directly convert to amyloids in osmotically stressed S. cerevisiae cells, providing a unique opportunity for real-time monitoring of condensate-to-fibril transition in vivo by fluorescence microscopy. Thus, cellular fate of stress-induced condensates depends on protein properties and/or intracellular environment.
Collapse
Affiliation(s)
- Anastasia V Grizel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Natalia A Gorsheneva
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Jonathan B Stevenson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jeremy Pflaum
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
15
|
Qin M, Fan W, Chen F, Ruan K, Liu D. Caprin1 Bridges PRMT1 to G3BP1 and Spaces Them to Ensure Proper Stress Granule Formation. J Mol Biol 2024; 436:168727. [PMID: 39079611 DOI: 10.1016/j.jmb.2024.168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Stress granules (SGs) are dynamic biomolecular condensates that form in the cytoplasm in response to cellular stress, encapsulating proteins and RNAs. Methylation is a key factor in the assembly of SGs, with PRMT1, which acts as an arginine methyltransferase, localizing to SGs. However, the precise mechanism of PRMT1 localization within SGs remains unknown. In this study, we identified that Caprin1 plays a primary role in the recruitment of PRMT1 to SGs, particularly through its C-terminal domain. Our findings demonstrate that Caprin1 serves a dual function as both a linker, facilitating the formation of a PRMT1-G3BP1 complex, and as a spacer, preventing the aberrant formation of SGs under non-stress conditions. This study sheds new lights on the regulatory mechanisms governing SG formation and suggests that Caprin1 plays a critical role in cellular responses to stress.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
16
|
Lin Y, Zheng J, Mai Z, Lin P, Lu Y, Cui L, Zhao X. Unveiling the veil of RNA binding protein phase separation in cancer biology and therapy. Cancer Lett 2024; 601:217160. [PMID: 39111384 DOI: 10.1016/j.canlet.2024.217160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
RNA-binding protein (RBP) phase separation in oncology reveals a complex interplay crucial for understanding tumor biology and developing novel therapeutic strategies. Aberrant phase separation of RBPs significantly influences gene regulation, signal transduction, and metabolic reprogramming, contributing to tumorigenesis and drug resistance. Our review highlights the integral roles of RBP phase separation in stress granule dynamics, mRNA stabilization, and the modulation of transcriptional and translational processes. Furthermore, interactions between RBPs and non-coding RNAs add a layer of complexity, providing new insights into their collaborative roles in cancer progression. The intricate relationship between RBPs and phase separation poses significant challenges but also opens up novel opportunities for targeted therapeutic interventions. Advancing our understanding of the molecular mechanisms and regulatory networks governing RBP phase separation could lead to breakthroughs in cancer treatment strategies.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
17
|
May JP. Plant viruses and biomolecular condensates: novel perspectives in virus replication strategies. THE NEW PHYTOLOGIST 2024; 243:1636-1638. [PMID: 38655603 DOI: 10.1111/nph.19778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This article is a Commentary on Lin & Nagy (2024), 243: 1917–1935.
Collapse
Affiliation(s)
- Jared P May
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO, 64110, USA
| |
Collapse
|
18
|
Chandru K, Potiszil C, Jia TZ. Alternative Pathways in Astrobiology: Reviewing and Synthesizing Contingency and Non-Biomolecular Origins of Terrestrial and Extraterrestrial Life. Life (Basel) 2024; 14:1069. [PMID: 39337854 PMCID: PMC11433091 DOI: 10.3390/life14091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of understanding the origins of life (OoL) on and off Earth and the search for extraterrestrial life (ET) are central aspects of astrobiology. Despite the considerable efforts in both areas, more novel and multifaceted approaches are needed to address these profound questions with greater detail and with certainty. The complexity of the chemical milieu within ancient geological environments presents a diverse landscape where biomolecules and non-biomolecules interact. This interaction could lead to life as we know it, dominated by biomolecules, or to alternative forms of life where non-biomolecules could play a pivotal role. Such alternative forms of life could be found beyond Earth, i.e., on exoplanets and the moons of Jupiter and Saturn. Challenging the notion that all life, including ET life, must use the same building blocks as life on Earth, the concept of contingency-when expanded beyond its macroevolution interpretation-suggests that non-biomolecules may have played essential roles at the OoL. Here, we review the possible role of contingency and non-biomolecules at the OoL and synthesize a conceptual model formally linking contingency with non-biomolecular OoL theories. This model emphasizes the significance of considering the role of non-biomolecules both at the OoL on Earth or beyond, as well as their potential as agnostic biosignatures indicative of ET Life.
Collapse
Affiliation(s)
- Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43600, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Selangor 43600, Malaysia
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa 682-0193, Tottori, Japan
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku 152-8550, Tokyo, Japan
| |
Collapse
|
19
|
Brumbaugh-Reed EH, Gao Y, Aoki K, Toettcher JE. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag. Nat Commun 2024; 15:6717. [PMID: 39112465 PMCID: PMC11306331 DOI: 10.1038/s41467-024-50858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function - dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles. Here we show that light-gated recruitment of a solubilizing domain, maltose-binding protein (MBP), results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP by disrupting condensation of the oncogenic fusion protein FUS-CHOP and reverting FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
Collapse
Affiliation(s)
- Ellen H Brumbaugh-Reed
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan
| | - Yang Gao
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo, 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan
- Laboratory of Cell Cycle Regulation Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8315, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
20
|
Cascarina SM, Ross ED. Identification of Low-Complexity Domains by Compositional Signatures Reveals Class-Specific Frequencies and Functions Across the Domains of Life. PLoS Comput Biol 2024; 20:e1011372. [PMID: 38748749 PMCID: PMC11132505 DOI: 10.1371/journal.pcbi.1011372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/28/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Low-complexity domains (LCDs) in proteins are typically enriched in one or two predominant amino acids. As a result, LCDs often exhibit unusual structural/biophysical tendencies and can occupy functional niches. However, for each organism, protein sequences must be compatible with intracellular biomolecules and physicochemical environment, both of which vary from organism to organism. This raises the possibility that LCDs may occupy sequence spaces in select organisms that are otherwise prohibited in most organisms. Here, we report a comprehensive survey and functional analysis of LCDs in all known reference proteomes (>21k organisms), with added focus on rare and unusual types of LCDs. LCDs were classified according to both the primary amino acid and secondary amino acid in each LCD sequence, facilitating detailed comparisons of LCD class frequencies across organisms. Examination of LCD classes at different depths (i.e., domain of life, organism, protein, and per-residue levels) reveals unique facets of LCD frequencies and functions. To our surprise, all 400 LCD classes occur in nature, although some are exceptionally rare. A number of rare classes can be defined for each domain of life, with many LCD classes appearing to be eukaryote-specific. Certain LCD classes were consistently associated with identical functions across many organisms, particularly in eukaryotes. Our analysis methods enable simultaneous, direct comparison of all LCD classes between individual organisms, resulting in a proteome-scale view of differences in LCD frequencies and functions. Together, these results highlight the remarkable diversity and functional specificity of LCDs across all known life forms.
Collapse
Affiliation(s)
- Sean M. Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eric D. Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
21
|
Lin CC, Suen KM, Lidster J, Ladbury JE. The emerging role of receptor tyrosine kinase phase separation in cancer. Trends Cell Biol 2024; 34:371-379. [PMID: 37777392 DOI: 10.1016/j.tcb.2023.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Receptor tyrosine kinase (RTK)-mediated signal transduction is fundamental to cell function and drives important cellular outcomes which, when dysregulated, can lead to malignant tumour growth and metastasis. The initiation of signals from plasma membrane-bound RTKs is subjected to multiple regulatory mechanisms that control downstream effector protein recruitment and function. The high propensity of RTKs to condense via liquid-liquid phase separation (LLPS) into membraneless organelles with downstream effector proteins provides a further fundamental mechanism for signal regulation. Herein we highlight how this phenomenon contributes to cancer signalling and consider the potential impact of LLPS on outcomes for cancer patients.
Collapse
Affiliation(s)
- Chi-Chuan Lin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Kin Man Suen
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jessica Lidster
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
22
|
Voci S, Vannoy KJ, Dick JE. Femtoliter oil droplets act as CO 2 micropumps for uninterrupted electrochemiluminescence at the water|oil interface. J Colloid Interface Sci 2024; 661:853-860. [PMID: 38330657 PMCID: PMC11307245 DOI: 10.1016/j.jcis.2024.01.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
Interfacial effects are well-known to significantly alter chemical reactivity, especially in confined environments, where the surface to volume ratio increases. Here, we observed an inhomogeneity in the electrogenerated chemiluminescence (ECL) intensity decrease over time in a multiphasic system composed of femtoliter water droplets entrapping femtoliter volumes of the 1,2-dichloroethane (DCE) continuous phase. In usual electrochemiluminescence (ECL) reactions involving an ECL chromophore and oxalate ([C2O4]2-), the build-up of CO2 diminishes the ECL signal with time because of bubble formation. We hypothesised that relative solubilities of chemical species in these environments play a dramatic role in interfacial reactivity. Water droplets, loaded with the ECL luminophore [Ru(bpy)3]2+ and the coreactant [C2O4]2- were allowed to stochastically collide and adsorb at the surface of a glassy carbon macroelectrode. When water droplets coalesce on the surface, they leave behind femtoliter droplets of the DCE phase (inclusions). We report the surprising finding that the addition of multiple interfaces, due to the presence of continuous phase's femtoliter inclusions, allows sustained ECL over time after successive potential applications at the triple-phase boundary between water droplet|electrode|DCE inclusion. When femtoliter droplets of DCE form on the electrode surface, bright rings of ECL are observed during the simultaneous oxidation of [Ru(bpy)3]2+ and [C2O4]2-. Control experiments and finite element modelling allowed us to propose that these rings arise because CO2 that is generated near the 1,2-dichloroethane droplet partitions in due to relative solubility of CO2 in 1,2-dichloroethane and builds up and/or is expelled at the top of the droplet. The small droplets of the DCE phase act as micropumps, pumping away carbon dioxide from the interface. These results highlight the unexpected point that confined microenvironments and their geometry can tune chemical reactions of industrial importance and fundamental interest.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Mukherjee S, Ramos S, Pezzotti S, Kalarikkal A, Prass TM, Galazzo L, Gendreizig D, Barbosa N, Bordignon E, Havenith M, Schäfer LV. Entropy Tug-of-War Determines Solvent Effects in the Liquid-Liquid Phase Separation of a Globular Protein. J Phys Chem Lett 2024; 15:4047-4055. [PMID: 38580324 PMCID: PMC11033941 DOI: 10.1021/acs.jpclett.3c03421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/15/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Liquid-liquid phase separation (LLPS) plays a key role in the compartmentalization of cells via the formation of biomolecular condensates. Here, we combined atomistic molecular dynamics (MD) simulations and terahertz (THz) spectroscopy to determine the solvent entropy contribution to the formation of condensates of the human eye lens protein γD-Crystallin. The MD simulations reveal an entropy tug-of-war between water molecules that are released from the protein droplets and those that are retained within the condensates, two categories of water molecules that were also assigned spectroscopically. A recently developed THz-calorimetry method enables quantitative comparison of the experimental and computational entropy changes of the released water molecules. The strong correlation mutually validates the two approaches and opens the way to a detailed atomic-level understanding of the different driving forces underlying the LLPS.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Center
for Theoretical Chemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| | - Sashary Ramos
- Department
of Physical Chemistry II, Ruhr University
Bochum, D-44780 Bochum, Germany
| | - Simone Pezzotti
- Department
of Physical Chemistry II, Ruhr University
Bochum, D-44780 Bochum, Germany
| | - Abhishek Kalarikkal
- Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| | - Tobias M. Prass
- Center
for Theoretical Chemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| | - Laura Galazzo
- Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| | - Dominik Gendreizig
- Department
of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - Natercia Barbosa
- Department
of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - Enrica Bordignon
- Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
- Department
of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - Martina Havenith
- Department
of Physical Chemistry II, Ruhr University
Bochum, D-44780 Bochum, Germany
| | - Lars V. Schäfer
- Center
for Theoretical Chemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| |
Collapse
|
24
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
25
|
Wahiduzzaman, Tindell SJ, Alexander E, Hackney E, Kharel K, Schmidtke R, Arkov AL. Drosophila germ granules are assembled from protein components through different modes of competing interactions with the multi-domain Tudor protein. FEBS Lett 2024; 598:774-786. [PMID: 38499396 DOI: 10.1002/1873-3468.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Membraneless organelles are RNA-protein assemblies which have been implicated in post-transcriptional control. Germ cells form membraneless organelles referred to as germ granules, which contain conserved proteins including Tudor domain-containing scaffold polypeptides and their partner proteins that interact with Tudor domains. Here, we show that in Drosophila, different germ granule proteins associate with the multi-domain Tudor protein using different numbers of Tudor domains. Furthermore, these proteins compete for interaction with Tudor in vitro and, surprisingly, partition to distinct and poorly overlapping clusters in germ granules in vivo. This partition results in minimization of the competition. Our data suggest that Tudor forms structurally different configurations with different partner proteins which dictate different biophysical properties and phase separation parameters within the same granule.
Collapse
Affiliation(s)
- Wahiduzzaman
- Department of Biological Sciences, Murray State University, KY, USA
| | - Samuel J Tindell
- Department of Biological Sciences, Murray State University, KY, USA
| | - Emma Alexander
- Department of Biological Sciences, Murray State University, KY, USA
| | - Ethan Hackney
- Department of Biological Sciences, Murray State University, KY, USA
| | - Kabita Kharel
- Department of Biological Sciences, Murray State University, KY, USA
| | - Ryan Schmidtke
- Department of Biological Sciences, Murray State University, KY, USA
| | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, KY, USA
| |
Collapse
|
26
|
Ghosh S, Douglas JF. Phase separation in the presence of fractal aggregates. J Chem Phys 2024; 160:104903. [PMID: 38469910 DOI: 10.1063/5.0190196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Liquid-liquid phase separation in diverse manufacturing and biological contexts often occurs in the presence of aggregated particles or complex-shaped structures that do not actively participate in the phase separation process, but these "background" structures can serve to direct the macroscale phase separation morphology by their local symmetry-breaking presence. We perform Cahn-Hilliard phase-field simulations in two dimensions to investigate the morphological evolution, wetting, and domain growth phenomena during the phase separation of a binary mixture in contact with model fractal aggregates. Our simulations reveal that phase separation initially accelerates around the fractal due to the driving force of wetting, leading to the formation of the target composition patterns about the fractals, as previously observed for circular particles. After the formation of a wetting layer on the fractal, however, we observe a dramatic slowing-down in the kinetics of phase separation, and the characteristic domain size eventually "pins" to a finite value or approaches an asymptotic scaling regime as an ordinary phase if the phase separation loses memory of the aggregates when the scale of phase separation becomes much larger than the aggregate. Furthermore, we perform simulations to examine the effects of compositional interference between fractals with a view to elucidating interesting novel morphological features in the phase-separating mixture. Our findings should be helpful in understanding the qualitative aspects of the phase separation processes in mixtures containing particle aggregates relevant for coating, catalyst, adhesive, and electronic applications as well as in diverse biological contexts, where phase separation occurs in the presence of irregular heterogeneities.
Collapse
Affiliation(s)
- Supriyo Ghosh
- Metallurgical & Materials Engineering Department, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Jack F Douglas
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
27
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
28
|
Cho HS, Park YH, Moon S, Park C, Jung HS, Namkoong S. Targeting the NTF2-like domain of G3BP1: Novel modulators of intracellular granule dynamics. Biochem Biophys Res Commun 2024; 697:149497. [PMID: 38262290 DOI: 10.1016/j.bbrc.2024.149497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Stress granule (SG) is a temporary cellular structure that plays a crucial role in the regulation of mRNA and protein sequestration during various cellular stress conditions. SG enables cells to cope with stress more effectively, conserving vital energy and resources. Focusing on the NTF2-like domain of G3BP1, a key protein in SG dynamics, we explore to identify and characterize novel small molecules involved in SG modulation without external stressors. Through in silico molecular docking approach to simulate the interaction between various compounds and the NTF2-like domain of G3BP1, we identified three compounds as potential candidates that could bind to the NTF2-like domain of G3BP1. Subsequent immunofluorescence experiments demonstrated that these compounds induce the formation of SG-like, G3BP1-positive granules. Importantly, the granule formation by these compounds occurs independent from the phosphorylation of eIF2α, a common mechanism in SG formation, suggesting that it might offer a new strategy for influencing SG dynamics implicated in various diseases.
Collapse
Affiliation(s)
- Hyun Suh Cho
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yoon Ho Park
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Chihyun Park
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
29
|
Ross JL. Self-assembling synthetic polymer forms liquid-like droplets. Nature 2024; 626:957-958. [PMID: 38418908 DOI: 10.1038/d41586-024-00421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|
30
|
Brumbaugh-Reed EH, Aoki K, Toettcher JE. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575860. [PMID: 38293146 PMCID: PMC10827175 DOI: 10.1101/2024.01.16.575860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function-dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles, a major question in cell biology and drug development. Here we report an optogenetic approach to selectively dissolve a condensate of interest in a reversible and spatially controlled manner. We show that light-gated recruitment of maltose-binding protein (MBP), a commonly used solubilizing domain in protein purification, results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP, showing that disrupting condensation of the oncogenic fusion protein FUS-CHOP results in reversion of FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
Collapse
Affiliation(s)
- Ellen H Brumbaugh-Reed
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ 08544
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8315, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton NJ 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ 08544
| |
Collapse
|
31
|
Wang Y, Cao K, Zong M, Yuan S, Zhang N, Liu Y. Mutual promotion of co-condensation of KRAS G-quadruplex and a well-folded protein HMGB1. Nucleic Acids Res 2024; 52:288-299. [PMID: 37897365 PMCID: PMC10783520 DOI: 10.1093/nar/gkad938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/09/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) of G-quadruplex (GQ) is involved in many crucial cellular processes, while the quadruplex-folding and their functions are typically modulated by specific DNA-binding proteins. However, the regulatory mechanism of binding proteins, particularly the well-folded proteins, on the LLPS of GQs is largely unknown. Here, we investigated the effect of HMGB1 on the condensation of a G-quadruplex of KRAS promoter (GQKRAS). The results show that these two rigid macro-biomolecules undergo co-condensation through a mutual promotion manner, while neither of them can form LLPS alone. Fluidity measurements confirm that the liquid-like droplets are highly dynamic. HMGB1 facilitates and stabilizes the quadruplex folding of GQKRAS, and this process enhances their co-condensation. The KRAS promoter DNA retains quadruplex folding in the droplets; interference with the GQ-folding disrupts the co-condensation of GQKRAS/HMGB1. Mechanistic studies reveal that electrostatic interaction is a key driving force of the interaction and co-condensation of GQKRAS/HMGB1; meanwhile, the recognition of two macro-biomolecules plays a crucial role in this process. This result indicates that the phase separation of GQs can be modulated by DNA binding proteins, and this process could also be an efficient way to recruit specific DNA binding proteins.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kaiming Cao
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Mingxi Zong
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Siming Yuan
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Na Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Yangzhong Liu
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
32
|
Zhang Y, Luo Y, Zhao J, Zheng W, Zhan J, Zheng H, Luo F. Emerging delivery systems based on aqueous two-phase systems: A review. Acta Pharm Sin B 2024; 14:110-132. [PMID: 38239237 PMCID: PMC10792979 DOI: 10.1016/j.apsb.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 01/22/2024] Open
Abstract
The aqueous two-phase system (ATPS) is an all-aqueous system fabricated from two immiscible aqueous phases. It is spontaneously assembled through physical liquid-liquid phase separation (LLPS) and can create suitable templates like the multicompartment of the intracellular environment. Delicate structures containing multiple compartments make it possible to endow materials with advanced functions. Due to the properties of ATPSs, ATPS-based drug delivery systems exhibit excellent biocompatibility, extraordinary loading efficiency, and intelligently controlled content release, which are particularly advantageous for delivering drugs in vivo . Therefore, we will systematically review and evaluate ATPSs as an ideal drug delivery system. Based on the basic mechanisms and influencing factors in forming ATPSs, the transformation of ATPSs into valuable biomaterials is described. Afterward, we concentrate on the most recent cutting-edge research on ATPS-based delivery systems. Finally, the potential for further collaborations between ATPS-based drug-carrying biomaterials and disease diagnosis and treatment is also explored.
Collapse
Affiliation(s)
- Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingqi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Chen C, Yi R, Igisu M, Sakaguchi C, Afrin R, Potiszil C, Kunihiro T, Kobayashi K, Nakamura E, Ueno Y, Antunes A, Wang A, Chandru K, Hao J, Jia TZ. Spectroscopic and Biophysical Methods to Determine Differential Salt-Uptake by Primitive Membraneless Polyester Microdroplets. SMALL METHODS 2023; 7:e2300119. [PMID: 37203261 DOI: 10.1002/smtd.202300119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/23/2023] [Indexed: 05/20/2023]
Abstract
α-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets. These salts could be essential cofactors of compartmentalized prebiotic reactions or even directly affect protocell structure. However, fully understanding polyester-salt interactions remains elusive, partially due to technical challenges of quantitative measurements in condensed phases. Here, spectroscopic and biophysical methods are applied to analyze salt uptake by polyester microdroplets. Inductively coupled plasma mass spectrometry is applied to measure the cation concentration within polyester microdroplets after addition of chloride salts. Combined with methods to determine the effects of salt uptake on droplet turbidity, size, surface potential and internal water distribution, it was observed that polyester microdroplets can selectively partition salt cations, leading to differential microdroplet coalescence due to ionic screening effects reducing electrostatic repulsion forces between microdroplets. Through applying existing techniques to novel analyses related to primitive compartment chemistry and biophysics, this study suggests that even minor differences in analyte uptake can lead to significant protocellular structural change.
Collapse
Affiliation(s)
- Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Motoko Igisu
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Chie Sakaguchi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Rehana Afrin
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Katsura Kobayashi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Yuichiro Ueno
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau, SAR, China
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW, 2052, Australia
- RNA Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Synthetic Biology, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor, 43650, Malaysia
| | - Jihua Hao
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- Deep Space Exploration Laboratory/CAS Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei, 230026, China
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| |
Collapse
|
34
|
DiRusso CJ, DeMaria AM, Wong J, Wang W, Jordanides JJ, Whitty A, Allen KN, Gilmore TD. A conserved core region of the scaffold NEMO is essential for signal-induced conformational change and liquid-liquid phase separation. J Biol Chem 2023; 299:105396. [PMID: 37890781 PMCID: PMC10694592 DOI: 10.1016/j.jbc.2023.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Scaffold proteins help mediate interactions between protein partners, often to optimize intracellular signaling. Herein, we use comparative, biochemical, biophysical, molecular, and cellular approaches to investigate how the scaffold protein NEMO contributes to signaling in the NF-κB pathway. Comparison of NEMO and the related protein optineurin from a variety of evolutionarily distant organisms revealed that a central region of NEMO, called the Intervening Domain (IVD), is conserved between NEMO and optineurin. Previous studies have shown that this central core region of the IVD is required for cytokine-induced activation of IκB kinase (IKK). We show that the analogous region of optineurin can functionally replace the core region of the NEMO IVD. We also show that an intact IVD is required for the formation of disulfide-bonded dimers of NEMO. Moreover, inactivating mutations in this core region abrogate the ability of NEMO to form ubiquitin-induced liquid-liquid phase separation droplets in vitro and signal-induced puncta in vivo. Thermal and chemical denaturation studies of truncated NEMO variants indicate that the IVD, while not intrinsically destabilizing, can reduce the stability of surrounding regions of NEMO due to the conflicting structural demands imparted on this region by flanking upstream and downstream domains. This conformational strain in the IVD mediates allosteric communication between the N- and C-terminal regions of NEMO. Overall, these results support a model in which the IVD of NEMO participates in signal-induced activation of the IKK/NF-κB pathway by acting as a mediator of conformational changes in NEMO.
Collapse
Affiliation(s)
| | - Anthony M DeMaria
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Judy Wong
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Wei Wang
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jack J Jordanides
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts, USA.
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
35
|
Kang WB, Bao L, Zhang K, Guo J, Zhu BC, Tang QY, Ren WT, Zhu G. Multi-scale molecular simulation of random peptide phase separation and its extended-to-compact structure transition driven by hydrophobic interactions. SOFT MATTER 2023; 19:7944-7954. [PMID: 37815389 DOI: 10.1039/d3sm00633f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Intrinsically disordered proteins (IDPs) often undergo liquid-liquid phase separation (LLPS) and form membraneless organelles or protein condensates. One of the core problems is how do electrostatic repulsion and hydrophobic interactions in peptides regulate the phase separation process? To answer this question, this study uses random peptides composed of positively charged arginine (Arg, R) and hydrophobic isoleucine (Ile, I) as the model systems, and conduct large-scale simulations using all atom and coarse-grained model multi-scale simulation methods. In this article, we investigate the phase separation of different sequences using a coarse-grained model. It is found that the stronger the electrostatic repulsion in the system, the more extended the single-chain structure, and the more likely the system forms a low-density homogeneous phase. In contrast, the stronger the hydrophobic effect of the system, the more compact the single-chain structure, the easier phase separation, and the higher the critical temperature of phase separation. Overall, by taking the random polypeptides composed of two types of amino acid residues as model systems, this study discusses the relationship between the protein sequence and phase behaviour, and provides theoretical insights into the interactions within or between proteins. It is expected to provide essential physical information for the sequence design of functional IDPs, as well as data to support the diagnosis and treatment of the LLPS-associated diseases.
Collapse
Affiliation(s)
- Wen Bin Kang
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Lei Bao
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Kai Zhang
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Jia Guo
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Ben Chao Zhu
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Qian-Yuan Tang
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Wei Tong Ren
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Gen Zhu
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
36
|
Daga KR, Feray Çoşar M, Lowenkron A, Hao J, Rouillard J. Environmental Stability and Its Importance for the Emergence of Darwinian Evolution. Life (Basel) 2023; 13:1960. [PMID: 37895342 PMCID: PMC10608181 DOI: 10.3390/life13101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
The emergence of Darwinian evolution represents a central point in the history of life as we know it. However, it is generally assumed that the environments in which life appeared were hydrothermal environments, with highly variable conditions in terms of pH, temperature or redox levels. Are evolutionary processes favored to appear in such settings, where the target of biological adaptation changes over time? How would the first evolving populations compete with non-evolving populations? Using a numerical model, we explore the effect of environmental variation on the outcome of the competition between evolving and non-evolving populations of protocells. Our study found that, while evolving protocells consistently outcompete non-evolving populations in stable environments, they are outcompeted in variable environments when environmental variations occur on a timescale similar to the average duration of a generation. This is due to the energetic burden represented by adaptation to the wrong environmental conditions. Since the timescale of temperature variation in natural hydrothermal settings overlaps with the average prokaryote generation time, the current work indicates that a solution must have been found by early life to overcome this threshold.
Collapse
Affiliation(s)
- Khushi R. Daga
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA; (K.R.D.); (M.F.Ç.); (A.L.)
| | - Mensura Feray Çoşar
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA; (K.R.D.); (M.F.Ç.); (A.L.)
| | - Abigail Lowenkron
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA; (K.R.D.); (M.F.Ç.); (A.L.)
| | - Jihua Hao
- Deep Space Exploration Laboratory/CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Joti Rouillard
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA; (K.R.D.); (M.F.Ç.); (A.L.)
- Deep Space Exploration Laboratory/CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
37
|
Bubli SY, Smolag M, Blackwell E, Lin YC, Tsavalas JG, Li L. Inducing an LCST in hydrophilic polysaccharides via engineered macromolecular hydrophobicity. Sci Rep 2023; 13:14896. [PMID: 37689784 PMCID: PMC10492858 DOI: 10.1038/s41598-023-41947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
Thermoresponsive polysaccharide-based materials with tunable transition temperatures regulating phase-separated microdomains offer substantial opportunities in tissue engineering and biomedical applications. To develop novel synthetic thermoresponsive polysaccharides, we employed versatile chemical routes to attach hydrophobic adducts to the backbone of hydrophilic dextran and gradually increased the hydrophobicity of the dextran chains to engineer phase separation. Conjugating methacrylate moieties to the dextran backbone yielded a continuous increase in macromolecular hydrophobicity that induced a reversible phase transition whose lower critical solution temperature can be modulated via variations in polysaccharide concentration, molecular weight, degree of methacrylation, ionic strength, surfactant, urea and Hofmeister salts. The phase separation is driven by increased hydrophobic interactions of methacrylate residues, where the addition of surfactant and urea disassociates hydrophobic interactions and eliminates phase transition. Morphological characterization of phase-separated dextran solutions via scanning electron and flow imaging microscopy revealed the formation of microdomains upon phase transition. These novel thermoresponsive dextrans exhibited promising cytocompatibility in cell culture where the phase transition exerted negligible effects on the attachment, spreading and proliferation of human dermal fibroblasts. Leveraging the conjugated methacrylate groups, we employed photo-initiated radical polymerization to generate phase-separated hydrogels with distinct microdomains. Our bottom-up approach to engineering macromolecular hydrophobicity of conventional hydrophilic, non-phase separating dextrans to induce robust phase transition and generate thermoresponsive phase-separated biomaterials will find applications in mechanobiology, tissue repair and regenerative medicine.
Collapse
Affiliation(s)
- Saniya Yesmin Bubli
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Matthew Smolag
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Ellen Blackwell
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Yung-Chun Lin
- Department of Chemistry, University of New Hampshire, Durham, NH, 03824, USA
| | - John G Tsavalas
- Department of Chemistry, University of New Hampshire, Durham, NH, 03824, USA
- Materials Science Program, University of New Hampshire, Durham, NH, 03824, USA
| | - Linqing Li
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
38
|
Iannucci LF, D'Erchia AM, Picardi E, Bettio D, Conca F, Surdo NC, Di Benedetto G, Musso D, Arrigoni C, Lolicato M, Vismara M, Grisan F, Salviati L, Milanesi L, Pesole G, Lefkimmiatis K. Cyclic AMP induces reversible EPAC1 condensates that regulate histone transcription. Nat Commun 2023; 14:5521. [PMID: 37684224 PMCID: PMC10491619 DOI: 10.1038/s41467-023-41088-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The second messenger cyclic AMP regulates many nuclear processes including transcription, pre-mRNA splicing and mitosis. While most functions are attributed to protein kinase A, accumulating evidence suggests that not all nuclear cyclic AMP-dependent effects are mediated by this kinase, implying that other effectors may be involved. Here we explore the nuclear roles of Exchange Protein Activated by cyclic AMP 1. We find that it enters the nucleus where forms reversible biomolecular condensates in response to cyclic AMP. This phenomenon depends on intrinsically disordered regions present at its amino-terminus and is independent of protein kinase A. Finally, we demonstrate that nuclear Exchange Protein Activated by cyclic AMP 1 condensates assemble at genomic loci on chromosome 6 in the proximity of Histone Locus Bodies and promote the transcription of a histone gene cluster. Collectively, our data reveal an unexpected mechanism through which cyclic AMP contributes to nuclear spatial compartmentalization and promotes the transcription of specific genes.
Collapse
Affiliation(s)
- Liliana Felicia Iannucci
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | - Anna Maria D'Erchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Bettio
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Filippo Conca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | - Nicoletta Concetta Surdo
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy
| | - Giulietta Di Benedetto
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy
| | - Deborah Musso
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mauro Vismara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Konstantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy.
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy.
| |
Collapse
|
39
|
Toledo PL, Gianotti AR, Vazquez DS, Ermácora MR. Protein nanocondensates: the next frontier. Biophys Rev 2023; 15:515-530. [PMID: 37681092 PMCID: PMC10480383 DOI: 10.1007/s12551-023-01105-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Over the past decade, myriads of studies have highlighted the central role of protein condensation in subcellular compartmentalization and spatiotemporal organization of biological processes. Conceptually, protein condensation stands at the highest level in protein structure hierarchy, accounting for the assembly of bodies ranging from thousands to billions of molecules and for densities ranging from dense liquids to solid materials. In size, protein condensates range from nanocondensates of hundreds of nanometers (mesoscopic clusters) to phase-separated micron-sized condensates. In this review, we focus on protein nanocondensation, a process that can occur in subsaturated solutions and can nucleate dense liquid phases, crystals, amorphous aggregates, and fibers. We discuss the nanocondensation of proteins in the light of general physical principles and examine the biophysical properties of several outstanding examples of nanocondensation. We conclude that protein nanocondensation cannot be fully explained by the conceptual framework of micron-scale biomolecular condensation. The evolution of nanocondensates through changes in density and order is currently under intense investigation, and this should lead to the development of a general theoretical framework, capable of encompassing the full range of sizes and densities found in protein condensates.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Diego S. Vazquez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Mario R. Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
40
|
Beagrie RA, Thieme CJ, Annunziatella C, Baugher C, Zhang Y, Schueler M, Kukalev A, Kempfer R, Chiariello AM, Bianco S, Li Y, Davis T, Scialdone A, Welch LR, Nicodemi M, Pombo A. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C. Nat Methods 2023:10.1038/s41592-023-01903-1. [PMID: 37336949 PMCID: PMC10333126 DOI: 10.1038/s41592-023-01903-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/01/2023] [Indexed: 06/21/2023]
Abstract
Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve 'active' regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain 'inactive' regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.
Collapse
Affiliation(s)
- Robert A Beagrie
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Laboratory of Gene Regulation, Weatherall Institute of Molecular Medicine, Oxford, UK
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford, UK
| | - Christoph J Thieme
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Catherine Baugher
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Yingnan Zhang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Markus Schueler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Yichao Li
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Trenton Davis
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Lonnie R Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA.
| | - Mario Nicodemi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany.
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant'Angelo, Naples, Italy.
- Berlin Institute of Health (BIH), MDC-Berlin, Berlin, Germany.
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany.
- Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
41
|
Ma Q, Huang F, Guo W, Feng K, Huang T, Cai Y. Identification of Phase-Separation-Protein-Related Function Based on Gene Ontology by Using Machine Learning Methods. Life (Basel) 2023; 13:1306. [PMID: 37374089 DOI: 10.3390/life13061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Phase-separation proteins (PSPs) are a class of proteins that play a role in the process of liquid-liquid phase separation, which is a mechanism that mediates the formation of membranelle compartments in cells. Identifying phase separation proteins and their associated function could provide insights into cellular biology and the development of diseases, such as neurodegenerative diseases and cancer. Here, PSPs and non-PSPs that have been experimentally validated in earlier studies were gathered as positive and negative samples. Each protein's corresponding Gene Ontology (GO) terms were extracted and used to create a 24,907-dimensional binary vector. The purpose was to extract essential GO terms that can describe essential functions of PSPs and build efficient classifiers to identify PSPs with these GO terms at the same time. To this end, the incremental feature selection computational framework and an integrated feature analysis scheme, containing categorical boosting, least absolute shrinkage and selection operator, light gradient-boosting machine, extreme gradient boosting, and permutation feature importance, were used to build efficient classifiers and identify GO terms with classification-related importance. A set of random forest (RF) classifiers with F1 scores over 0.960 were established to distinguish PSPs from non-PSPs. A number of GO terms that are crucial for distinguishing between PSPs and non-PSPs were found, including GO:0003723, which is related to a biological process involving RNA binding; GO:0016020, which is related to membrane formation; and GO:0045202, which is related to the function of synapses. This study offered recommendations for future research aimed at determining the functional roles of PSPs in cellular processes by developing efficient RF classifiers and identifying the representative GO terms related to PSPs.
Collapse
Affiliation(s)
- Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
42
|
DiRusso CJ, DeMaria AM, Wong J, Jordanides JJ, Whitty A, Allen KN, Gilmore TD. A Conserved Core Region of the Scaffold NEMO is Essential for Signal-induced Conformational Change and Liquid-liquid Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542299. [PMID: 37292615 PMCID: PMC10245932 DOI: 10.1101/2023.05.25.542299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scaffold proteins help mediate interactions between protein partners, often to optimize intracellular signaling. Herein, we use comparative, biochemical, biophysical, molecular, and cellular approaches to investigate how the scaffold protein NEMO contributes to signaling in the NF-κB pathway. Comparison of NEMO and the related protein optineurin from a variety of evolutionarily distant organisms revealed that a central region of NEMO, called the Intervening Domain (IVD), is conserved between NEMO and optineurin. Previous studies have shown that this central core region of the IVD is required for cytokine-induced activation of IκB kinase (IKK). We show that the analogous region of optineurin can functionally replace the core region of the NEMO IVD. We also show that an intact IVD is required for the formation of disulfide-bonded dimers of NEMO. Moreover, inactivating mutations in this core region abrogate the ability of NEMO to form ubiquitin-induced liquid-liquid phase separation droplets in vitro and signal-induced puncta in vivo. Thermal and chemical denaturation studies of truncated NEMO variants indicate that the IVD, while not intrinsically destabilizing, can reduce the stability of surrounding regions of NEMO, due to the conflicting structural demands imparted on this region by flanking upstream and downstream domains. This conformational strain in the IVD mediates allosteric communication between N- and C-terminal regions of NEMO. Overall, these results support a model in which the IVD of NEMO participates in signal-induced activation of the IKK/NF-κB pathway by acting as a mediator of conformational changes in NEMO.
Collapse
Affiliation(s)
| | | | - Judy Wong
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Karen N. Allen
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
43
|
Matsuura U, Tahara S, Kajimoto S, Nakabayashi T. Label-free autofluorescence lifetime reveals the structural dynamics of ataxin-3 inside droplets formed via liquid-liquid phase separation. Sci Rep 2023; 13:6389. [PMID: 37076520 PMCID: PMC10113985 DOI: 10.1038/s41598-023-33268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Liquid-liquid phase separation is a phenomenon that features the formation of liquid droplets containing concentrated solutes. The droplets of neurodegeneration-associated proteins are prone to generate aggregates and cause diseases. To uncover the aggregation process from the droplets, it is necessary to analyze the protein structure with keeping the droplet state in a label-free manner, but there was no suitable method. In this study, we observed the structural changes of ataxin-3, a protein associated with Machado-Joseph disease, inside the droplets, using autofluorescence lifetime microscopy. Each droplet showed autofluorescence due to tryptophan (Trp) residues, and its lifetime increased with time, reflecting structural changes toward aggregation. We used Trp mutants to reveal the structural changes around each Trp and showed that the structural change consists of several steps on different timescales. We demonstrated that the present method visualizes the protein dynamics inside a droplet in a label-free manner. Further investigations revealed that the aggregate structure formed in the droplets differs from that formed in dispersed solutions and that a polyglutamine repeat extension in ataxin-3 hardly modulates the aggregation dynamics in the droplets. These findings highlight that the droplet environment facilitates unique protein dynamics different from those in solutions.
Collapse
Affiliation(s)
- Uchu Matsuura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Shinya Tahara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- JST PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
44
|
Sato Y, Takinoue M. Sequence-dependent fusion dynamics and physical properties of DNA droplets. NANOSCALE ADVANCES 2023; 5:1919-1925. [PMID: 36998664 PMCID: PMC10044877 DOI: 10.1039/d3na00073g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 06/19/2023]
Abstract
Liquid-liquid phase separation (LLPS) of biopolymer molecules generates liquid-like droplets. Physical properties such as viscosity and surface tension play important roles in the functions of these droplets. DNA-nanostructure-based LLPS systems provide useful model tools to investigate the influence of molecular design on the physical properties of the droplets, which has so far remained unclear. Herein, we report changes in the physical properties of DNA droplets by sticky end (SE) design in DNA nanostructures. We used a Y-shaped DNA nanostructure (Y-motif) with three SEs as a model structure. Seven different SE designs were used. The experiments were performed at the phase transition temperature where the Y-motifs self-assembled into droplets. We found that the DNA droplets assembled from the Y-motifs with longer SEs exhibited a longer coalescence period. In addition, the Y-motifs with the same length but different sequence SEs showed slight variations in the coalescence period. Our results suggest that the SE length greatly affected the surface tension at the phase transition temperature. We believe that these findings will accelerate our understanding of the relationship between molecular design and the physical properties of droplets formed via LLPS.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Computer Science, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokoham Kanagawa 226-8502 Japan
- Department of Intelligent and Control Systems, Kyushu Institute of Technology 680-4 Kawazu, IIzuka Fukuoka 820-8502 Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokoham Kanagawa 226-8502 Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology 4259, Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan
| |
Collapse
|
45
|
Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. Int J Mol Sci 2023; 24:ijms24065835. [PMID: 36982909 PMCID: PMC10054283 DOI: 10.3390/ijms24065835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.
Collapse
|
46
|
Deacetylation induced nuclear condensation of HP1γ promotes multiple myeloma drug resistance. Nat Commun 2023; 14:1290. [PMID: 36894562 PMCID: PMC9998874 DOI: 10.1038/s41467-023-37013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Acquired chemoresistance to proteasome inhibitors is a major obstacle in managing multiple myeloma but key regulators and underlying mechanisms still remain to be explored. We find that high level of HP1γ is associated with low acetylation modification in the bortezomib-resistant myeloma cells using SILAC-based acetyl-proteomics assay, and higher HP1γ level is positively correlated with poorer outcomes in the clinic. Mechanistically, elevated HDAC1 in the bortezomib-resistant myeloma cells deacetylates HP1γ at lysine 5 and consequently alleviates the ubiquitin-mediated protein degradation, as well as the aberrant DNA repair capacity. HP1γ interacts with the MDC1 to induce DNA repair, and simultaneously the deacetylation modification and the interaction with MDC1 enhance the nuclear condensation of HP1γ protein and the chromatin accessibility of its target genes governing sensitivity to proteasome inhibitors, such as CD40, FOS and JUN. Thus, targeting HP1γ stability by using HDAC1 inhibitor re-sensitizes bortezomib-resistant myeloma cells to proteasome inhibitors treatment in vitro and in vivo. Our findings elucidate a previously unrecognized role of HP1γ in inducing drug resistance to proteasome inhibitors of myeloma cells and suggest that targeting HP1γ may be efficacious for overcoming drug resistance in refractory or relapsed multiple myeloma patients.
Collapse
|
47
|
Peng Z, Wang J, Guo J, Li X, Wang S, Xie Y, Jiang H, Wang Y, Wang M, Hu M, Li Q, Wang Y, Mi JQ, Liu Z. All-trans retinoic acid improves NSD2-mediated RARα phase separation and efficacy of anti-CD38 CAR T-cell therapy in multiple myeloma. J Immunother Cancer 2023; 11:jitc-2022-006325. [PMID: 36918219 PMCID: PMC10016253 DOI: 10.1136/jitc-2022-006325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Immunotherapies targeting CD38 have demonstrated salient efficacy in relapsed/refractory multiple myeloma (MM). However, loss of CD38 antigen and outgrowth of CD38 negative plasma cells have emerged as a major obstacle in clinics. All-trans retinoic acid (ATRA) has been reported to upregulate CD38 expression, but the mechanism and adaptive genetic background remain unexplored. METHODS The efficacy of ATRA in upregulating CD38 expression in MM cells is evaluated by flow cytometry. The interaction between NSD2 and the RARα is analyzed by immunoprecipitation, and the nuclear condensation of RARα is evaluated under laser confocal microscope. A graft model of MM is established in NOD.Cg-PrkdcscidIl2rgtm1Wjl /SzJ mice, and the tumor burden is assessed by in vivo fluorescence imaging. RESULTS We report that ATRA upregulates MM cells CD38 in a non-linear manner, which is t(4;14) translocation dependent, and t(4;14) translocation-induced NSD2 shows positive correlation with ATRA-induced level of, but not with basal level of CD38 expression. Mechanistically, NSD2 interacts with the ATRA receptor, RARα, and protects it from degradation. Meanwhile, NSD2 enhances the nuclear condensation of RARα and modifies the histone H3 dimethylation at lysine 36 on CD38 promoter. Knockdown of NSD2 attenuates the sensitization of MM against ATRA induced CD38 upregulation. Translationally, ATRA is prone to augment the efficacy of anti-CD38 CAR T cells in NSD2high MM cells in vitro and in vivo. CONCLUSION This study elucidates a mechanism of ATRA in regulating CD38 expression and expands the clinical potential of ATRA in improving immunotherapies against CD38 in patients with MM.Cite Now.
Collapse
Affiliation(s)
- Ziyi Peng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jingya Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jing Guo
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Sheng Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ying Xie
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Jiang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yixuan Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Mengqi Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Meilin Hu
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Qian Li
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yafei Wang
- Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jian-Qing Mi
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China .,Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
48
|
Voci S, Clarke TB, Dick JE. Abiotic microcompartments form when neighbouring droplets fuse: an electrochemiluminescence investigation. Chem Sci 2023; 14:2336-2341. [PMID: 36873831 PMCID: PMC9977408 DOI: 10.1039/d2sc06553c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Many studies have shown chemistry proceeds differently in small volumes compared to bulk phases. However, few studies exist elucidating spontaneous means by which small volumes can form in Nature. Such studies are critical in understanding the formation of life in microcompartments. In this study, we track in real-time the coalescence of two or more water microdroplets adsorbed on an electrified surface in a 1,2-dichloroethane continuous phase by electrogenerated chemiluminescence (ECL) imaging, uncovering the spontaneous generation of multiple emulsions inside the resulting water droplets. During the fusion of adsorbed water droplets with each other on the electrode surface, volumes of organic and water phases are entrapped in between and detected respectively as ECL not-emitting and emitting regions. The diameter of those confined environments inside the water droplets can be less than a micrometer, as described by scanning electron microscopy data. This study adds a new mechanism for the generation of micro- and nano-emulsions and provides insight into confinement techniques under abiotic conditions as well as new potential strategies in microfluidic devices.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Thomas B Clarke
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA .,Elmore Family School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
49
|
Fritz AJ, Ghule PN, Toor R, Dillac L, Perelman J, Boyd J, Lian JB, Gordon JA, Frietze S, Van Wijnen A, Stein JL, Stein GS. Spatiotemporal Epigenetic Control of the Histone Gene Chromatin Landscape during the Cell Cycle. Crit Rev Eukaryot Gene Expr 2023; 33:85-97. [PMID: 37017672 PMCID: PMC10826887 DOI: 10.1615/critreveukaryotgeneexpr.2022046190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Prachi N. Ghule
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Rabail Toor
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Louis Dillac
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Jonah Perelman
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Joseph Boyd
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Johnathan A.R. Gordon
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont, USA
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Andre Van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| |
Collapse
|
50
|
Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates. Essays Biochem 2022; 66:831-847. [PMID: 36350034 DOI: 10.1042/ebc20220052] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
Abstract
The facts that many proteins with crucial biological functions do not have unique structures and that many biological processes are compartmentalized into the liquid-like biomolecular condensates, which are formed via liquid-liquid phase separation (LLPS) and are not surrounded by the membrane, are revolutionizing the modern biology. These phenomena are interlinked, as the presence of intrinsic disorder represents an important requirement for a protein to undergo LLPS that drives biogenesis of numerous membrane-less organelles (MLOs). Therefore, one can consider these phenomena as crucial constituents of a new IDP-LLPS-MLO field. Furthermore, intrinsically disordered proteins (IDPs), LLPS, and MLOs represent a clear link between molecular and cellular biology and soft matter and condensed soft matter physics. Both IDP and LLPS/MLO fields are undergoing explosive development and generate the ever-increasing mountain of crucial data. These new data provide answers to so many long-standing questions that it is difficult to imagine that in the very recent past, protein scientists and cellular biologists operated without taking these revolutionary concepts into account. The goal of this essay is not to deliver a comprehensive review of the IDP-LLPS-MLO field but to provide a brief and rather subjective outline of some of the recent developments in these exciting fields.
Collapse
|