1
|
Bruns H, Czajka TS, Sztucki M, Brandenburg S, Salditt T. Sarcomere, troponin, and myosin X-ray diffraction signals can be resolved in single cardiomyocytes. Biophys J 2024; 123:3024-3037. [PMID: 38956875 PMCID: PMC11427778 DOI: 10.1016/j.bpj.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024] Open
Abstract
Cardiac function relies on the autonomous molecular contraction mechanisms in the ventricular wall. Contraction is driven by ordered motor proteins acting in parallel to generate a macroscopic force. The averaged structure can be investigated by diffraction from model tissues such as trabecular and papillary cardiac muscle using collimated synchrotron beams, offering high resolution in reciprocal space. In the ventricular wall, however, the muscle tissue is compartmentalized into smaller branched cardiomyocytes, with a higher degree of disorder. We show that X-ray diffraction is now also capable of resolving the structural organization of actomyosin in single isolated cardiomyocytes of the ventricular wall. In addition to the hexagonal arrangement of thick and thin filaments, the diffraction signal of the hydrated and fixated cardiomyocytes was sufficient to reveal the myosin motor repeat (M3), the troponin complex repeat (Tn), and the sarcomere length. The sarcomere length signal comprised up to 13 diffraction orders, which were used to compute the sarcomere density profile based on Fourier synthesis. The Tn and M3 spacings were found in the same range as previously reported for other muscle types. The approach opens up a pathway to record the structural dynamics of living cells during the contraction cycle, toward a more complete understanding of cardiac muscle function.
Collapse
Affiliation(s)
| | | | - Michael Sztucki
- ESRF - European Synchrotron Radiation Facility, Grenoble, France
| | - Sören Brandenburg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Göttingen, Germany.
| |
Collapse
|
2
|
Hamidzada H, Pascual-Gil S, Wu Q, Kent GM, Massé S, Kantores C, Kuzmanov U, Gomez-Garcia MJ, Rafatian N, Gorman RA, Wauchop M, Chen W, Landau S, Subha T, Atkins MH, Zhao Y, Beroncal E, Fernandes I, Nanthakumar J, Vohra S, Wang EY, Sadikov TV, Razani B, McGaha TL, Andreazza AC, Gramolini A, Backx PH, Nanthakumar K, Laflamme MA, Keller G, Radisic M, Epelman S. Primitive macrophages induce sarcomeric maturation and functional enhancement of developing human cardiac microtissues via efferocytic pathways. NATURE CARDIOVASCULAR RESEARCH 2024; 3:567-593. [PMID: 39086373 PMCID: PMC11290557 DOI: 10.1038/s44161-024-00471-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2024] [Indexed: 08/02/2024]
Abstract
Yolk sac macrophages are the first to seed the developing heart, however we have no understanding of their roles in human heart development and function due to a lack of accessible tissue. Here, we bridge this gap by differentiating human embryonic stem cells (hESCs) into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Taken together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development, and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function.
Collapse
Affiliation(s)
- Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
- Department of Immunology, University of Toronto, Toronto, ON
| | - Simon Pascual-Gil
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Qinghua Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Gregory M. Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, ON
| | - Crystal Kantores
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Uros Kuzmanov
- Department of Physiology, University of Toronto, Toronto, ON
| | - M. Juliana Gomez-Garcia
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | | | | | - Wenliang Chen
- Scientific Research Center, the Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524023, China
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Tasnia Subha
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, ON
| | - Michael H. Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
| | - Yimu Zhao
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
| | - Erika Beroncal
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON
| | - Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
| | - Jared Nanthakumar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Shabana Vohra
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
| | - Erika Y. Wang
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, United States
| | | | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, United States
- Department of Cardiology, Pittsburgh VA Medical Center, Pittsburgh, PA, United States
| | - Tracy L. McGaha
- Department of Immunology, University of Toronto, Toronto, ON
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON
| | - Ana C. Andreazza
- Department of Psychiatry, University of Toronto, Toronto, ON
- Mitochondrial Innovation Initiative, Toronto, ON
| | - Anthony Gramolini
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
- Department of Physiology, University of Toronto, Toronto, ON
| | - Peter H. Backx
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Department of Physiology, University of Toronto, Toronto, ON
- Department of Biology, York University, Toronto, ON
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, ON
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON
- Department of Medical Biophysics, University of Toronto, Toronto, ON
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON
| | - Milica Radisic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, ON
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON
- Department of Immunology, University of Toronto, Toronto, ON
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| |
Collapse
|
3
|
Iwoń Z, Krogulec E, Kierlańczyk A, Baranowska P, Łopianiak I, Wojasiński M, Jastrzębska E. Improving rodents and humans cardiac cell maturity in vitrothrough polycaprolactone and polyurethane nanofibers. Biomed Mater 2024; 19:025031. [PMID: 38290152 DOI: 10.1088/1748-605x/ad240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Currently, numerous studies are conducted using nanofibers as a scaffold for culture cardiac cells; however, there still needs to be more research evaluating the impact of the physicochemical properties of polymer nanofibers on the structure and function of cardiac cells. We have studied how poly(ϵ-caprolactone) and polyurethane nanofibrous mats with different physicochemical properties influence the viability, morphology, orientation, and maturation of cardiac cells. For this purpose, the cells taken from different species were used. They were rat ventricular cardiomyoblasts (H9c2), mouse atrial cardiomyocytes (CMs) (HL-1), and human ventricular CMs. Based on the results, it can be concluded that cardiac cells cultured on nanofibers exhibit greater maturity in terms of orientation, morphology, and gene expression levels compared to cells cultured on polystyrene plates. Additionally, the physicochemical properties of nanofibers affecting the functionality of cardiac cells from different species and different parts of the heart were evaluated. These studies can support research on understanding and explaining mechanisms leading to cellular maturity present in the heart and the selection of nanofibers that will effectively help the maturation of CMs.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | | - Aleksandra Kierlańczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Patrycja Baranowska
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland
| | - Iwona Łopianiak
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Michal Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
4
|
Zhao P, Yang F, Jia X, Xiao Y, Hua C, Xing M, Lyu G. Extracellular Matrices as Bioactive Materials for In Situ Tissue Regeneration. Pharmaceutics 2023; 15:2771. [PMID: 38140112 PMCID: PMC10747903 DOI: 10.3390/pharmaceutics15122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Bioactive materials based on a nature-derived extracellular matrix (NECM) represent a category of biomedical devices with versatile therapeutic applications in the realms of tissue repair and engineering. With advancements in decellularization technique, the inherent bioactive molecules and the innate nano-structural and mechanical properties are preserved in three-dimensional scaffolds mainly composed of collagens. Techniques such as electrospinning, three-dimensional printing, and the intricate fabrication of hydrogels are developed to mimic the physical structures, biosignalling and mechanical cues of ECM. Until now, there has been no approach that can fully account for the multifaceted properties and diverse applications of NECM. In this review, we introduce the main proteins composing NECMs and explicate the importance of them when used as therapeutic devices in tissue repair. Nano-structural features of NECM and their applications regarding tissue repair are summarized. The origins, degradability, and mechanical property of and immune responses to NECM are also introduced. Furthermore, we review their applications, and clinical features thereof, in the repair of acute and chronic wounds, abdominal hernia, breast deformity, etc. Some typical marketed devices based on NECM, their indications, and clinical relevance are summarized.
Collapse
Affiliation(s)
- Peng Zhao
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (F.Y.); (Y.X.)
| | - Fengbo Yang
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (F.Y.); (Y.X.)
| | - Xiaoli Jia
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (F.Y.); (Y.X.)
| | - Yuqin Xiao
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (F.Y.); (Y.X.)
| | - Chao Hua
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (F.Y.); (Y.X.)
| |
Collapse
|
5
|
Jain K, Lim KYE, Sheetz MP, Kanchanawong P, Changede R. Intrinsic self-organization of integrin nanoclusters within focal adhesions is required for cellular mechanotransduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567975. [PMID: 38045378 PMCID: PMC10690202 DOI: 10.1101/2023.11.20.567975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Upon interaction with the extracellular matrix, the integrin receptors form nanoclusters as a first biochemical response to ligand binding. Here, we uncover a critical biodesign principle where these nanoclusters are spatially self-organized, facilitating effective mechanotransduction. Mouse Embryonic Fibroblasts (MEFs) with integrin β3 nanoclusters organized themselves with an intercluster distance of ∼550 nm on uniformly coated fibronectin substrates, leading to larger focal adhesions. We determined that this spatial organization was driven by cell-intrinsic factors since there was no pre-existing pattern on the substrates. Altering this spatial organization using cyclo-RGD functionalized Titanium nanodiscs (of 100 nm, corroborating to the integrin nanocluster size) spaced at intervals of 300 nm (almost half), 600 nm (normal) or 1000 nm (almost double) resulted in abrogation in mechanotransduction, indicating that a new parameter i.e., an optimal intercluster distance is necessary for downstream function. Overexpression of α-actinin, which induces a kink in the integrin tail, disrupted the establishment of the optimal intercluster distance, while simultaneous co-overexpression of talin head with α-actinin rescued it, indicating a concentration-dependent competition, and that cytoplasmic activation of integrin by talin head is required for the optimal intercluster organization. Additionally, talin head-mediated recruitment of FHOD1 that facilitates local actin polymerization at nanoclusters, and actomyosin contractility were also crucial for establishing the optimal intercluster distance and a robust mechanotransduction response. These findings demonstrate that cell-intrinsic machinery plays a vital role in organizing integrin receptor nanoclusters within focal adhesions, encoding essential information for downstream mechanotransduction signalling.
Collapse
|
6
|
Olson W, He R, Benedetto A, Iskratsch T, Shaitan K, Hall D. Editors' roundup: October 2022. Biophys Rev 2022; 14:1085-1091. [PMID: 36345281 PMCID: PMC9636339 DOI: 10.1007/s12551-022-01002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 10/17/2022] Open
Abstract
This commentary constitutes the October edition of the 'Editors' roundup'-a multi-author omnibus of personal recommendations to interesting biophysics-related articles contributed by members of the editorial boards of leading international biophysics journals. The present commentary contains contributions from Progress in Biochemistry and Biophysics (an official journal of the Biophysical Society of China), European Biophysics Journal (the official journal of the European Biophysical Societies Association), Biophysical Reviews (the official IUPAB journal), and Biophysics (an official journal of the Russian Academy of Sciences). This edition of the Editors' Roundup also contains a new section from an editor at large who has provided selections from a number of journals on a single thematic topic.
Collapse
Affiliation(s)
- Wilma Olson
- Department of Chemistry and Chemical Biology, the State University of New Jersey, Rutgers Piscataway, NB, NJ USA
- Center for Quantitative Biology, the State University of New Jersey, Rutgers Piscataway, NB, NJ USA
| | - Rongqiao He
- Basic College of Medicine, Southwest Medical University, Luzhou, 646000 Sichuan China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
- CAS Key Laboratory of Mental Health, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Antonio Benedetto
- School of Physics, University College Dublin, Dublin, D04 N2E5 Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 N2E5 Ireland
- Department of Science, University of Roma Tre, 00146 Rome, Italy
- Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Thomas Iskratsch
- School of Engineering and Material Sciences, Queen Mary University of London, London, England UK
| | - Konstantin Shaitan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, 00076 Aalto, Espoo, Finland
| |
Collapse
|
7
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
8
|
Liu J, Makowski L. Scanning x-ray microdiffraction: In situ molecular imaging of tissue and materials. Curr Opin Struct Biol 2022; 75:102421. [PMID: 35834949 PMCID: PMC11317818 DOI: 10.1016/j.sbi.2022.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Scanning x-ray microdiffraction of complex tissues and materials is an emerging method for the study of macromolecular structures in situ, providing information on the way molecular constituents are arranged and interact with their microenvironment. Acting as a bridge between high-resolution images of individual constituents and lower resolution microscopies that generate global views of material, scanning microdiffraction provides an approach to study the functioning of complex tissues across multiple length scales. Here, we discuss the methodology, summarize results from recent studies, and discuss the potential of the technique for future studies coordinated with other biophysical techniques.
Collapse
Affiliation(s)
- Jiliang Liu
- The European Radiation Synchrotron Facility (ESRF), Grenoble, France
| | - Lee Makowski
- Bioengineering Department, Northeastern University, Boston, MA, USA.
| |
Collapse
|
9
|
Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova ML, Teodori L, Pasquo A, Di Nardo P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. MICROMACHINES 2022; 13:mi13050780. [PMID: 35630247 PMCID: PMC9144100 DOI: 10.3390/mi13050780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Failure of tissues and organs resulting from degenerative diseases or trauma has caused huge economic and health concerns around the world. Tissue engineering represents the only possibility to revert this scenario owing to its potential to regenerate or replace damaged tissues and organs. In a regeneration strategy, biomaterials play a key role promoting new tissue formation by providing adequate space for cell accommodation and appropriate biochemical and biophysical cues to support cell proliferation and differentiation. Among other physical cues, the architectural features of the biomaterial as a kind of instructive stimuli can influence cellular behaviors and guide cells towards a specific tissue organization. Thus, the optimization of biomaterial micro/nano architecture, through different manufacturing techniques, is a crucial strategy for a successful regenerative therapy. Over the last decades, many micro/nanostructured biomaterials have been developed to mimic the defined structure of ECM of various soft and hard tissues. This review intends to provide an overview of the relevant studies on micro/nanostructured scaffolds created for soft and hard tissue regeneration and highlights their biological effects, with a particular focus on striated muscle, cartilage, and bone tissue engineering applications.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| | - Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Arsalan Ul Haq
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Fabio De Matteis
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento Ingegneria Industriale, Università Degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Emanuela Tamburri
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Letizia Terranova
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Alessandra Pasquo
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
| | - Paolo Di Nardo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| |
Collapse
|
10
|
Abstract
The current issue (volume 13 issue 6, 2021) is a Special Issue jointly dedicated to scientific content presented at the 20th triennial IUPAB Congress that was held in conjunction with both the 45th Annual Meeting of the Brazilian Biophysical Society (Sociedade Brasileira de Biofísica - SBBf) and the 50th Annual Meeting of the Brazilian Society for Biochemistry and Molecular Biology (Sociedade Brasileira de Bioquímica e Biologia Molecular - SBBq). In addition to describing the scientific and nonscientific content arising from the meeting this sub-editorial also provides a look back at some of the high points for Biophysical Reviews in the year 2021 before going on to describe a number of matters of interest to readers of the journal in relation to the coming year of 2022.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
11
|
Swiatlowska P, Iskratsch T. Cardiovascular mechanobiology-a Special Issue to look at the state of the art and the newest insights into the role of mechanical forces in cardiovascular development, physiology and disease. Biophys Rev 2021; 13:575-577. [PMID: 34777612 PMCID: PMC8555016 DOI: 10.1007/s12551-021-00842-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
There has been much progress recently in the area of cardiovascular mechanobiology and this Special Issue aims at taking stock. This editorial gives context of the main motivation for this special issue as well as a brief summary of its content.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|