1
|
Deschner F, Mostert D, Daniel JM, Voltz A, Schneider DC, Khangholi N, Bartel J, Pessanha de Carvalho L, Brauer M, Gorelik TE, Kleeberg C, Risch T, Haeckl FPJ, Herraiz Benítez L, Andreas A, Kany AM, Jézéquel G, Hofer W, Müsken M, Held J, Bischoff M, Seemann R, Brötz-Oesterhelt H, Schneider T, Sieber S, Müller R, Herrmann J. Natural products chlorotonils exert a complex antibacterial mechanism and address multiple targets. Cell Chem Biol 2025; 32:586-602.e15. [PMID: 40203831 DOI: 10.1016/j.chembiol.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/12/2024] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance is a threat to human health rendering current first-line antibiotics ineffective. New agents overcoming resistance mechanisms are urgently needed to guarantee successful treatment of human disease in the future. Chlorotonils, a natural product class with yet unknown mode of action, were shown to have broad-spectrum activity against multi-resistant Gram-positive bacteria and the malaria parasite Plasmodium falciparum, with promising activity and safety in murine infection models. Here, we report that chlorotonils can target the cell membrane, cell wall, and protein biosynthesis. They can be characterized by a rapid onset of action via interference with ion homeostasis leading to membrane depolarization, however, without inducing severe barrier failure or cellular lysis. Further characterization confirmed binding of chlorotonils to bacterial membrane lipids eventually leading to uncontrolled potassium transport. Additionally, we identified functional inhibition of the peptidoglycan biosynthesis protein YbjG and methionine aminopeptidase MetAP as secondary targets of chlorotonils.
Collapse
Affiliation(s)
- Felix Deschner
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Dietrich Mostert
- Center for Functional Protein Assemblies, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Jan-Martin Daniel
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Voltz
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Dana Carina Schneider
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbial Bioactive Compounds, University of Tübingen, 72074 Tübingen, Germany
| | - Navid Khangholi
- Experimental Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | | | - Madita Brauer
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Tatiana E Gorelik
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Christian Kleeberg
- Institute for Inorganic and Analytical Chemistry, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Timo Risch
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Laura Herraiz Benítez
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Anastasia Andreas
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Andreas Martin Kany
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Gwenaëlle Jézéquel
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Walter Hofer
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Jana Held
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Institute of Tropical Medicine, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Markus Bischoff
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Institute for Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Ralf Seemann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbial Bioactive Compounds, University of Tübingen, 72074 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Department of Microbial Bioactive Compounds, University of Tübingen, 72074 Tübingen, Germany; Cluster or Excellence "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Tanja Schneider
- German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany; Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephan Sieber
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Center for Functional Protein Assemblies, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Rolf Müller
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123 Saarbrücken, Germany; Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner sites: Bonn-Cologne, Hannover-Braunschweig, and Tübingen, 38124 Braunschweig, Germany.
| |
Collapse
|
2
|
Schouten G, Paulussen F, Grossmann TN, Bitter W, van Ulsen P. Membrane Modification and Adaptation of Metabolism by Acinetobacter baumannii Prompts Resistance to Antimicrobial Activity of Outer Membrane Perturbing Peptide L8. J Mol Biol 2025; 437:169135. [PMID: 40221130 DOI: 10.1016/j.jmb.2025.169135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Multidrug resistant (MDR) Acinetobacter baumannii has emerged as one of the most concerning nosocomial pathogens worldwide. One approach to target MDR A. baumannii is treatment with synergistic combinations of outer membrane-permeabilizing antimicrobial peptides (AMP) and antibiotics that otherwise only act against Gram-positive bacteria. Resistance against AMPs is rarely observed, especially when administered in combination with other drugs. Recently, we described the synergistic antimicrobial activity of AMPs L8 and L8S1 with rifampicin against a clinical isolate of A. baumannii. In the current work we explore the mechanisms of action of these peptides. We demonstrate that L8 and L8S1 perturb the cell envelope of A. baumannii. Moreover, we show that resistance against peptide L8 could be acquired in vitro either by increasing the amount of PE lipid on the surface or by increasing biofilm formation. Interestingly, the resistance to the antimicrobial activity of the peptides did not affect membrane perturbation or synergistic activity of the peptides with rifampicin, suggesting a dual mechanism of action for these peptides.
Collapse
Affiliation(s)
- Gina Schouten
- Medical Microbiology and Infection Control (MMI), Amsterdam UMC Location Vumc, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Felix Paulussen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Wilbert Bitter
- Medical Microbiology and Infection Control (MMI), Amsterdam UMC Location Vumc, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Molecular Microbiology, A-life, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Peter van Ulsen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Molecular Microbiology, A-life, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Wang W, Zhong Q, Huang X. Antibacterial and anti-biofilm activities of Derazantinib (ARQ-087) against Staphylococcus aureus. Arch Microbiol 2025; 207:78. [PMID: 40047947 DOI: 10.1007/s00203-025-04288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
The global rise of multidrug-resistant pathogens, particularly methicillin-resistant Staphylococcus aureus (MRSA), represents a critical public health challenge. This study evaluates the antibacterial and anti-biofilm activities of Derazantinib (ARQ-087) against S. aureus. ARQ-087 exhibited minimum inhibitory concentration (MIC) values ranging from 4 to 16 µM against S. aureus reference laboratory strains and diverse clinical MRSA isolates, demonstrating strong antibacterial activity with minimal resistance development. Time-kill assays demonstrated a concentration- and time-dependent reduction in bacterial viability. Crystal violet staining assays revealed that ARQ-087 significantly inhibited MRSA biofilm formation in a dose-dependent manner. Additionally, ARQ-087 exhibited strong anti-biofilm activity against pre-formed biofilms, as shown by colony counts and confocal laser scanning microscopy, which indicated extensive biofilm disruption and bacterial cell death. Mechanistic studies revealed that ARQ-087 disrupts bacterial membrane integrity, as evidenced by SYTOX Green and DISC3(5) fluorescence assays, while inducing intracellular ATP depletion and reactive oxygen species generation, contributing to bacterial death. ARQ-087 also displayed negligible hemolytic activity and no acute toxicity observed in a Galleria mellonella infection model. In this model, ARQ-087 prolonged the survival of larvae infected with S. aureus. These findings highlight ARQ-087 as a promising therapeutic candidate for treating MRSA infections and biofilm-associated diseases. Further preclinical studies are needed to confirm its potential for clinical application.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People's Republic of China
| | - Qiuxiang Zhong
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People's Republic of China
| | - Xincheng Huang
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
4
|
Panda G, Dehury S, Behuria HG, Biswal BK, Jena AK, Mohanty I, Hotta S, Padhi SK, Sahu SK. Gymnema saponin-induced lipid flip-flop identifies rigid membrane phenotype of methicillin resistant S. aureus and enhances it's antibiotic susceptibility. Arch Biochem Biophys 2025; 765:110303. [PMID: 39805384 DOI: 10.1016/j.abb.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Our previous study revealed that lipid flip-flop inducing phytochemicals from Gymnema sylvestre increase membrane permeability of antimicrobials in S. aureus. However, their lipid flipping and membrane permeabilizing effect on methicillin resistant S. aureus (MRSA) membrane that has intrinsically higher aminoacylated lipid content compared to methicillin sensitive S. aureus (MSSA) is poorly characterized. Gymnema saponins, gymnemic acid I and IV significantly increased the antibiotic susceptibility in both MSSA and MRSA. MRSA exhibited a rigid membrane with lipid diffusion coefficient 0.0002 μm2/s compared to the MSSA membrane lipids with diffusion coefficient 1.48 μm2/s. Further, unlike MSSA, MRSA cells inhibited fusion of fluid liposomes with their plasma membrane. In vitro assay on reconstituted membrane vesicles revealed that Gymnema saponins induced 60 % lipid flipping in MSSA membrane compared to only 20 % lipid flipping in MRSA, indicating significantly lower Gymnema saponin-induced trans-bilayer lipid mobility in MRSA. Gymnema saponins induced significantly lower crystal violet uptake, release of cellular protein, cell shrinkage and lysis in MRSA compared to MSSA. Gymnema saponins led to dose-dependent inhibition of lipid-aminoacylation in both MSSA and MRSA making their membranes more negative compared to untreated control cells. In silico analysis reveals binding of both gymnemic acid I and IV to multiple peptide resistance factor (binding energy ∼ 7.5 kCal), the protein responsible for lipid aminoacylation in S. aureus. For the first time, our study reveals that MRSA membrane with higher aminoacyl-PG compared to MSSA shows significantly lower rate of diffusion and trans-bilayer flip-flop of lipids. Further, gymnemic acids are useful probes for identification, characterization and drug sensitization of rigid membrane MRSA phenotypes.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India
| | - Swagatika Dehury
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India
| | - Himadri Gourav Behuria
- Multi-disciplinary Research Unit, PRM Medical College and Hospital, Baripada, Odisha, 757107, India
| | - Bijesh Kumar Biswal
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ashis Kumar Jena
- Department of Chemistry, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India
| | - Indrani Mohanty
- Department of Microbiology, PRM Medical College and Hospital, Baripada, Odisha, 757107, India
| | - Sasmita Hotta
- Department of Microbiology, PRM Medical College and Hospital, Baripada, Odisha, 757107, India
| | - Santosh Kumar Padhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India.
| |
Collapse
|
5
|
Sierra-Hernandez O, Saurith-Coronell O, Rodríguez-Macías J, Márquez E, Mora JR, Paz JL, Flores-Sumoza M, Mendoza-Mendoza A, Flores-Morales V, Marrero-Ponce Y, Barigye SJ, Martinez-Rios F. In Silico Identification of Potential Clovibactin-like Antibiotics Binding to Unique Cell Wall Precursors in Diverse Gram-Positive Bacterial Strains. Int J Mol Sci 2025; 26:1724. [PMID: 40004190 PMCID: PMC11855776 DOI: 10.3390/ijms26041724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The rise in multidrug-resistant bacteria highlights the critical need for novel antibiotics. This study explores clovibactin-like compounds as potential therapeutic agents targeting lipid II, a crucial component in bacterial cell wall synthesis, using in silico techniques. A total of 2624 clovibactin analogs were sourced from the PubChem database and screened using ProTox 3.0 software based on their ADME-Tox properties, prioritizing candidates with favorable pharmacokinetic profiles and minimal toxicity. Molecular docking protocols were then employed to assess the binding interactions of the selected compounds with lipid II. Our analysis identified Compound 22 as a particularly promising candidate, exhibiting strong binding affinity, stable complex formation, and high selectivity for the target. Binding energy analysis, conducted via molecular dynamics simulations, revealed a highly negative value of -25.50 kcal/mol for Compound 22, surpassing that of clovibactin and underscoring its potential efficacy. In addition, Compound 22 was prioritized due to its exceptional binding affinity to lipid II and its favorable ADME-Tox properties, suggesting a lower likelihood of adverse effects. These characteristics position Compound 22 as a promising candidate for further pharmacological development. While our computational results are encouraging, experimental validation is essential to confirm the efficacy and safety of these compounds. This study not only advances our understanding of clovibactin analogs but also contributes to the ongoing efforts to combat antimicrobial resistance through innovative antibiotic development.
Collapse
Affiliation(s)
- Olimpo Sierra-Hernandez
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, Vía Puerto Colombia, Puerto Colombia 081007, Colombia; (O.S.-H.); (O.S.-C.)
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Oscar Saurith-Coronell
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5, Vía Puerto Colombia, Puerto Colombia 081007, Colombia; (O.S.-H.); (O.S.-C.)
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Juan Rodríguez-Macías
- Facultad de Ciencias de la Salud, Exactas y Naturales, Universidad Libre, Barranquilla 080001, Colombia;
| | - Edgar Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - José Ramón Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador;
| | - José L. Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Maryury Flores-Sumoza
- Programa de Química y Farmacia, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Carrera 59 N° 59-65, Barranquilla 080002, Colombia;
| | - Adel Mendoza-Mendoza
- Programa de Ingeniería Industrial, Universidad del Atlántico, Barranquilla 080001, Colombia;
| | - Virginia Flores-Morales
- Laboratorio de Síntesis Asimétrica y Bioenergética (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Campus XXI Km 6 Carr. Zac-Gdl, Zacatecas 98160, Mexico;
| | - Yovani Marrero-Ponce
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, Mexico; (Y.M.-P.); (F.M.-R.)
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Diego de Robles y Vía Interoceánica, Universidad San Francisco de Quito (USFQ), Quito 170157, Ecuador
| | - Stephen J. Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain;
| | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, Mexico; (Y.M.-P.); (F.M.-R.)
| |
Collapse
|
6
|
Gazerani G, Piercey LR, Reema S, Wilson KA. Examining the Biophysical Properties of the Inner Membrane of Gram-Negative ESKAPE Pathogens. J Chem Inf Model 2025; 65:1453-1464. [PMID: 39874531 DOI: 10.1021/acs.jcim.4c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins. Given the cell membrane's critical role in bacterial survival, antibiotics targeting the cell membrane have been proposed to combat bacterial infections. However, a deeper understanding of the biophysical properties of the bacterial cell membrane is crucial to developing effective and specific antibiotics. In this study, Martini coarse-grain molecular dynamics simulations were used to investigate the interplay between membrane composition and biophysical properties of the inner membrane across four pathogenic bacterial species: Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli. The simulations indicate the impact of species-specific membrane composition on the overall membrane properties. Specifically, the cardiolipin concentration in the inner membrane is a key factor influencing the membrane features. Model membranes with varying concentrations of bacterial lipids (phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin) further support the significant role of cardiolipin in determining the membrane biophysical properties. The bacterial inner membrane models developed in this work pave the way for future simulations of bacterial membrane proteins and for simulations investigating novel strategies aimed at disrupting the bacterial membrane to treat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Golbarg Gazerani
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Lesley R Piercey
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Syeda Reema
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Katie A Wilson
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| |
Collapse
|
7
|
Smith BL, Zhang M, King MD. Airborne Escherichia coli bacteria biosynthesize lipids in response to aerosolization stress. Sci Rep 2025; 15:2349. [PMID: 39833243 PMCID: PMC11746921 DOI: 10.1038/s41598-025-86562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Gram-negative bacteria pose an increased threat to public health because of their ability to evade the effects of many antimicrobials with growing antibiotic resistance globally. One key component of gram-negative bacteria resistance is the functionality and the cells' ability to repair the outer membrane (OM) which acts as a barrier for the cell to the external environment. The biosynthesis of lipids, particularly lipopolysaccharides, or lipooligosaccharides (LPS/LOS) is essential for OM repair. Here we show the phenotypic and genotypic changes of Escherichia coli MG1655 (E. coli) before and after exposure to short-term aerosolization, 5 min, and long-term indoor aerosolization, 30 min. Short-term aerosolization samples exhibited major damages to the OM and resulted in the elongation of the cells. Long-term aerosolization seemed to lead to cell lysis and aggregation of cell material. Disintegrated OM rendered some of the elongated cells susceptible to cytoplasmic leakage and other damages. Further analysis of the repairs the E. coli cells seemed to enact after short-term aerosolization revealed that the repair molecules were likely lipid-containing droplets that perfectly countered the air pressure impacting the E. coli cells. If lipid biosynthesis to counter the pressure is inhibited in bacteria that are exposed to environmental conditions with high air velocity, the cells would lyse or be exposed to more toxins and thus become more susceptible to antimicrobial treatments. This article is the first to show lipid behavior in response to aerosolization stress in airborne bacteria both genotypically and phenotypically. Understanding the relationship between environmental conditions in ventilated spaces, lipid biosynthesis, and cellular responses is crucial for developing effective strategies to combat bacterial infections and antibiotic resistance. By elucidating the repair mechanisms initiated by E. coli in response to aerosolization, this study contributes to the broader understanding of bacterial adaptation and vulnerability under specific environmental pressures. These insights may pave the way for novel therapeutic approaches that target lipid biosynthesis pathways and exploit vulnerabilities in bacterial defenses, ultimately improving treatment outcomes.
Collapse
Affiliation(s)
- Brooke L Smith
- Aerosol Technology Laboratory, Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX, 77843, USA
| | - Meiyi Zhang
- Aerosol Technology Laboratory, Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX, 77843, USA
| | - Maria D King
- Aerosol Technology Laboratory, Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Shin S, Yu J, Tae H, Zhao Y, Jiang D, Qiao Y, Kim W, Cho NJ. Exploring the Membrane-Active Interactions of Antimicrobial Long-Chain Fatty Acids Using a Supported Lipid Bilayer Model for Gram-Positive Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56705-56717. [PMID: 39388376 DOI: 10.1021/acsami.4c11158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The dynamic nature of bacterial lipid membranes significantly impacts the efficacy of antimicrobial therapies. However, traditional assay methods often fall short in replicating the complexity of these membranes, necessitating innovative approaches. Herein, we successfully fabricated model bacterially supported lipid bilayers (SLBs) that closely mimic the characteristics of Gram-positive bacteria using the solvent-assisted lipid bilayer (SALB) technique. By employing a quartz crystal microbalance with dissipation and fluorescence microscopy, we investigated the interactions between these bacterial mimetic membranes and long-chain unsaturated fatty acids. Specifically, linolenic acid (LNA) and linoleic acid (LLA) demonstrated interaction behaviors correlated with the critical micelle concentration (CMC) on Gram-positive membranes, resulting in membrane remodeling and removal at concentrations above their respective CMC values. In contrast, oleic acid (OA), while showing similar membrane remodeling patterns to LNA and LLA, exhibited membrane insertion and CMC-independent activity on the Gram-positive membranes. Particularly, LNA and LLA demonstrated bactericidal effects and promoted membrane permeability and ATP leakage in the bacterial membranes. OA, characterized by a CMC-independent activity profile, exhibited potent bactericidal effects due to its robust penetration into the SLBs, also enhancing membrane permeability and ATP leakage. These findings shed light on the intricate molecular mechanisms governing the interactions between long-chain unsaturated fatty acids and bacterial membranes. Importantly, this study underscores the potential of using biologically relevant model bacterial membrane systems to develop innovative strategies for combating bacterial infections and designing effective therapeutic agents.
Collapse
Affiliation(s)
- Sungmin Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
| | - Jingyeong Yu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Dongping Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
| |
Collapse
|
9
|
Dessenne C, Ménart B, Acket S, Dewulf G, Guerardel Y, Vidal O, Rossez Y. Lipidomic analyses reveal distinctive variations in homeoviscous adaptation among clinical strains of Acinetobacter baumannii, providing insights from an environmental adaptation perspective. Microbiol Spectr 2024; 12:e0075724. [PMID: 39254344 PMCID: PMC11448061 DOI: 10.1128/spectrum.00757-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Acinetobacter baumannii is known for its antibiotic resistance and is increasingly found outside of healthcare settings. To survive colder temperatures, bacteria, including A. baumannii, adapt by modifying glycerophospholipids (GPL) to maintain membrane flexibility. This study examines the lipid composition of six clinical A. baumannii strains, including the virulent AB5075, at two temperatures. At 18°C, five strains consistently show an increase in palmitoleic acid (C16:1), while ABVal2 uniquely shows an increase in oleic acid (C18:1). LC-HRMS2 analysis identifies shifts in GPL and glycerolipid composition between 18°C and 37°C, highlighting variations in phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) lipids. ABVal2 shows increased PE with C18:1 and C16:1 at 18°C, but no change in PG, in contrast to other strains that show increased PE and PG with C16:1. Notably, although A. baumannii typically lacks FabA, a key enzyme for unsaturated fatty acid synthesis, this enzyme was found in both ABVal2 and ABVal3. In addition, ABVal2 contains five candidate desaturases that may contribute to its lipid profile. The study also reveals variations in strain motility and biofilm formation over temperature. These findings enhance our understanding of A. baumannii's physiological adaptations, survival strategies and ecological fitness in different environments.IMPORTANCEAcinetobacter baumannii, a bacterium known for its resistance to antibiotics, is a concern in healthcare settings. This study focused on understanding how this bacterium adapts to different temperatures and how its lipid composition changes. Lipids are the building blocks of cell membranes. By studying these changes, scientists can gain insights into how the bacterium survives and behaves in various environments. This understanding improves our understanding of its global dissemination capabilities. The results of the study contribute to our broader understanding of how Acinetobacter baumannii works, which is important for developing strategies to combat its impact on patient health.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Benoît Ménart
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Sébastien Acket
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| | - Gisèle Dewulf
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| |
Collapse
|
10
|
Li XM, Gao Y, Wang SH, Huang YG, Long GQ, Wang DD, Zhang R, Wang AH, Huang SH, Jia JM. Natural Prenylflavonoids from Sophora flavescens Root Bark against Multidrug-Resistant Methicillin-Sensitive Staphylococcus aureus Targeting the Membrane Permeability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14684-14700. [PMID: 38905352 DOI: 10.1021/acs.jafc.4c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The overuse of antibiotics in animal farming and aquaculture has led to multidrug-resistant methicillin-sensitive Staphylococcus aureus (MR-MSSA) becoming a common pathogen in foodborne diseases. Sophora flavescens Ait. serves as a traditional plant antibacterial agent and functional food ingredient. A total of 30 compounds (1-30) were isolated from the root bark of S. flavescens, consisting of 20 new compounds (1-20). In the biological activity assay, compound 1 demonstrated a remarkable inhibitory effect on MR-MSSA, with an MIC of 2 μg/mL. Furthermore, 1 was found to rapidly eliminate bacteria, inhibit biofilm growth, and exhibit exceptionally low cytotoxicity. Mechanistic studies have revealed that 1 possesses an enhanced membrane-targeting ability, binding to the bacterial cell membrane components phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and cardiolipin (CL). This disruption of bacterial cell membrane integrity increases intracellular reactive oxygen species, protein and DNA leakage, reduced bacterial metabolism, and ultimately bacterial death. In summary, these findings suggest that compound 1 holds promise as a lead compound against MR-MSSA.
Collapse
Affiliation(s)
- Xin-Min Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yun Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Si-Han Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yao-Guang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guo-Qing Long
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Dong-Dong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Rui Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - An-Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Hui Huang
- Department of Head and Neck Surgery, Stomatological Hospital of China Medical University, Shenyang 110002, People's Republic of China
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
11
|
Xie H, Zhang R, Li Z, Guo R, Li J, Fu Q, Wang X, Zhou Y. Endogenous Type I-C CRISPR-Cas system of Streptococcus equi subsp. zooepidemicus promotes biofilm formation and pathogenicity. Front Microbiol 2024; 15:1417993. [PMID: 38841053 PMCID: PMC11150851 DOI: 10.3389/fmicb.2024.1417993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is a significant zoonotic pathogen that causes septicemia, meningitis, and mastitis in domestic animals. Recent reports have highlighted high-mortality outbreaks among swine in the United States. Traditionally recognized for its adaptive immune functions, the CRISPR-Cas system has also been implicated in gene regulation, bacterial pathophysiology, virulence, and evolution. The Type I-C CRISPR-Cas system, which is prevalent in SEZ isolates, appears to play a pivotal role in regulating the pathogenicity of SEZ. By constructing a Cas3 mutant strain (ΔCas3) and a CRISPR-deficient strain (ΔCRISPR), we demonstrated that this system significantly promotes biofilm formation and cell adhesion. However, the deficiency in the CRISPR-Cas system did not affect bacterial morphology or capsule production. In vitro studies showed that the CRISPR-Cas system enhances pro-inflammatory responses in RAW264.7 cells. The ΔCas3 and ΔCRISPR mutant strains exhibited reduced mortality rates in mice, accompanied by a decreased bacterial load in specific organs. RNA-seq analysis revealed distinct expression patterns in both mutant strains, with ΔCas3 displaying a broader range of differentially expressed genes, which accounted for over 70% of the differential genes observed in ΔCRISPR. These genes were predominantly linked to lipid metabolism, the ABC transport system, signal transduction, and quorum sensing. These findings enhance our understanding of the complex role of the CRISPR-Cas system in SEZ pathogenesis and provide valuable insights for developing innovative therapeutic strategies to combat infections.
Collapse
Affiliation(s)
- Honglin Xie
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ziyuan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruhai Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Junda Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
12
|
Akhash N, Farajzadeh Sheikh A, Farshadzadeh Z. Design of a novel analogue peptide with potent antibiofilm activities against Staphylococcus aureus based upon a sapecin B-derived peptide. Sci Rep 2024; 14:2256. [PMID: 38278972 PMCID: PMC10817945 DOI: 10.1038/s41598-024-52721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
Nowadays, antimicrobial peptides are promising to confront the existing global crisis of antibiotic resistance. Here, a novel analogue peptide (mKLK) was designed based upon a D-form amidated sapecin B-derived peptide (KLK) by replacing two lysine residues with two tryptophan and one leucine by lysine, and inserting one alanine. The mKLK displayed superior amphipathic helixes in which the most of hydrophobic residues are confined to one face of the helix and had a higher hydrophobic moment compared with KLK. The mKLK retained its antibacterial activity and structure in human serum, suggesting its stability to proteolytic degradation. The values of MIC and MBC for mKLK were equal to those of KLK against clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA). However, mKLK showed more capability of in vitro inhibiting, eradicating, and dispersing MRSA and MSSA biofilms compared with KLK. Furthermore, a remarkable inhibitory activity of mKLK against MRSA and MSSA biofilms was seen in the murine model of catheter-associated biofilm infection. Results of this study show that mKLK not only exhibits antibacterial activity and serum stability but also a potent biofilm inhibitory activity at sub-MIC concentrations, confirming its potential therapeutic advantage for preventing biofilm-associated MRSA and MSSA infections.
Collapse
Affiliation(s)
- Nasim Akhash
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Farajzadeh Sheikh
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Farshadzadeh
- Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Dennison SR, Morton LH, Badiani K, Harris F, Phoenix DA. Bacterial susceptibility and resistance to modelin-5. SOFT MATTER 2023; 19:8247-8263. [PMID: 37869970 DOI: 10.1039/d3sm01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 μM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 μM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m-1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix < 0), which promoted high levels of lysis (84.1%) and P. aeruginosa cell death. M5-NH2 showed a very strong affinity (Kd = 3.5 μM) and very high levels of amphiphilic α-helical structure with cardiolipin membranes (96.0%,) which primarily drove the peptide's membranolytic action against P. aeruginosa. In contrast, M5-NH2 killed Staphylococcus aureus with an MLC of 147.6 μM and weakly bound its CM with a Kd of 117.6 μM, The peptide adopted low levels of amphiphilic α-helical structure (35.0%) and only penetrated the upper regions of the CM (3.3 mN m-1). This insertion stabilised CM structure via decreased lipid packing and increased fluidity (ΔGmix > 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide.
Collapse
Affiliation(s)
- Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Leslie Hg Morton
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Kamal Badiani
- Pepceuticals Limited, 4 Feldspar Close, Warrens Park, Enderby, Leicestershire, LE19 4JS, UK
| | - Frederick Harris
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| |
Collapse
|
14
|
MacDermott-Opeskin HI, Wilson KA, O'Mara ML. The Impact of Antimicrobial Peptides on the Acinetobacter baumannii Inner Membrane Is Modulated by Lipid Polyunsaturation. ACS Infect Dis 2023; 9:815-826. [PMID: 36920795 DOI: 10.1021/acsinfecdis.2c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The Gram-negative pathogen Acinetobacter baumannii is a primary contributor to nosocomial multi-drug-resistant (MDR) infections. To combat the rise of MDR infections, novel features of A. baumannii need to be considered for the development of new treatment options. One such feature is the preferential scavenging of exogenous lipids, including host-derived polyunsaturated fatty acids (PUFAs), for membrane phospholipid synthesis. These alterations in membrane composition impact both the lipid chemistry and the membrane biophysical properties. In this work we examine how antimicrobial peptides (AMPs) interact with the inner membranes of A. baumannii in the presence and absence of polyunsaturated phospholipids. Using coarse-grained molecular dynamics simulations of complex A. baumannii inner membrane models derived from lipidomes of bacteria grown in the presence and absence of PUFAs, we examine the impact of the adsorption of four prototypical AMPs (CAMEL, LL-37, pexiganan, and magainin-2) on the membrane biophysical properties. Our simulations reveal that the impact of AMP adsorption on the membrane biophysical properties was dependent on both the membrane composition and the specific AMP involved. Both lipid headgroup charge and tail unsaturation played important roles in driving the interactions that occurred both within the membrane and between the membrane and AMPs. The changes to the membrane biophysical properties also showed a complex relationship with the AMP's physical properties, such as AMP charge, chain length, and charge-to-mass ratio. Cumulatively, this work highlights the importance of studying AMPs using a complex membrane environment and provides insights into the mechanistic action of AMPs in polyunsaturated lipid-rich bacterial membranes.
Collapse
Affiliation(s)
- Hugo I MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Katie A Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7 Canada
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Modi SK, Gaur S, Sengupta M, Singh MS. Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance. Front Microbiol 2023; 14:1135579. [PMID: 37152753 PMCID: PMC10160668 DOI: 10.3389/fmicb.2023.1135579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Antimicrobial Resistance (AMR) raises a serious concern as it contributes to the global mortality by 5 million deaths per year. The overall impact pertaining to significant membrane changes, through broad spectrum drugs have rendered the bacteria resistant over the years. The economic expenditure due to increasing drug resistance poses a global burden on healthcare community and must be dealt with immediate effect. Nanoparticles (NP) have demonstrated inherent therapeutic potential or can serve as nanocarriers of antibiotics against multidrug resistant (MDR) pathogens. These carriers can mask the antibiotics and help evade the resistance mechanism of the bacteria. The targeted delivery can be fine-tuned through surface functionalization of Nanocarriers using aptamers, antibodies etc. This review covers various molecular mechanisms acquired by resistant bacteria towards membrane modification. Mechanistic insight on 'NP surface-bacterial membrane' interactions are crucial in deciding the role of NP as therapeutic. Finally, we highlight the potential accessible membrane targets for designing smart surface-functionalized nanocarriers which can act as bacteria-targeted robots over the existing clinically available antibiotics. As the bacterial strains around us continue to evolve into resistant versions, nanomedicine can offer promising and alternative tools in overcoming AMR.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Smriti Gaur
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Mrittika Sengupta
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- Mrittika Sengupta, ;
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- *Correspondence: Manu Smriti Singh, ;
| |
Collapse
|
16
|
Wee GN, Lyou ES, Hong JK, No JH, Kim SB, Lee TK. Phenotypic convergence of bacterial adaption to sub-lethal antibiotic treatment. Front Cell Infect Microbiol 2022; 12:913415. [PMID: 36467735 PMCID: PMC9714565 DOI: 10.3389/fcimb.2022.913415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/05/2022] [Indexed: 01/01/2024] Open
Abstract
Microorganisms can adapt quickly to changes in their environment, leading to various phenotypes. The dynamic for phenotypic plasticity caused by environmental variations has not yet been fully investigated. In this study, we analyzed the time-series of phenotypic changes in Staphylococcus cells during adaptive process to antibiotics stresses using flow cytometry and Raman spectroscopy. The nine antibiotics with four different mode of actions were treated in bacterial cells at a sub-lethal concentration to give adaptable stress. Although the growth rate initially varied depending on the type of antibiotic, most samples reached the maximum growth comparable to the control through the short-term adaptation after 24 h. The phenotypic diversity, which showed remarkable changes depending on antibiotic treatment, converged identical to the control over time. In addition, the phenotype with cellular biomolecules converted into a bacterial cell that enhance tolerance to antibiotic stress with increases in cytochrome and lipid. Our findings demonstrated that the convergence into the phenotypes that enhance antibiotic tolerance in a short period when treated with sub-lethal concentrations, and highlight the feasibility of phenotypic approaches in the advanced antibiotic treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, South Korea
| |
Collapse
|
17
|
Bacterial Membranes Are More Perturbed by the Asymmetric Versus Symmetric Loading of Amphiphilic Molecules. MEMBRANES 2022; 12:membranes12040350. [PMID: 35448320 PMCID: PMC9032087 DOI: 10.3390/membranes12040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023]
Abstract
Characterizing the biophysical properties of bacterial membranes is critical for understanding the protective nature of the microbial envelope, interaction of biological membranes with exogenous materials, and designing new antibacterial agents. Presented here are molecular dynamics simulations for two cationic quaternary ammonium compounds, and the anionic and nonionic form of a fatty acid molecule interacting with a Staphylococcus aureus bacterial inner membrane. The effect of the tested materials on the properties of the model membranes are evaluated with respect to various structural properties such as the lateral pressure profile, lipid tail order parameter, and the bilayer’s electrostatic potential. Conducting asymmetric loading of molecules in only one leaflet, it was observed that anionic and cationic amphiphiles have a large impact on the Staphylococcus aureus membrane’s electrostatic potential and lateral pressure profile as compared to a symmetric distribution. Nonintuitively, we find that the cationic and anionic molecules induce a similar change in the electrostatic potential, which points to the complexity of membrane interfaces, and how asymmetry can induce biophysical consequences. Finally, we link changes in membrane structure to the rate of electroporation for the membranes, and again find a crucial impact of introducing asymmetry to the system. Understanding these physical mechanisms provides critical insights and viable pathways for the rational design of membrane-active molecules, where controlling the localization is key.
Collapse
|
18
|
Hall D. Biophysical Reviews: from the umbra of 2020-2021 into the antumbra of 2022. Biophys Rev 2022; 14:3-12. [PMID: 35222731 PMCID: PMC8864210 DOI: 10.1007/s12551-022-00938-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
This sub-Editorial for Volume 14 Issue 1 (2022) first makes comment on the current issue and then describes matters of interest related to the journal's activities in 2022-chief among which are (i.) the announcement of the winner of the 2022 Michèle Auger Award for Young Scientists' Independent Research, (ii.) an outline of this year's finalized Special Issue (SI) lineup, (iii.) a description of a new production service offered by Springer to those submitting to the Biophysical Reviews journal, and (iv.) an introduction of newly appointed members of the Biophysical Reviews' Editorial Board.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|