1
|
Bekker G, Nagao C, Shirota M, Nakamura T, Katayama T, Kihara D, Kinoshita K, Kurisu G. Protein Data Bank Japan: Improved tools for sequence-oriented analysis of protein structures. Protein Sci 2025; 34:e70052. [PMID: 39969112 PMCID: PMC11837027 DOI: 10.1002/pro.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
Protein Data Bank Japan (PDBj) is the Asian hub of three-dimensional macromolecular structure data, and a founding member of the worldwide Protein Data Bank. We have accepted, processed, and distributed experimentally determined biological macromolecular structures for over two decades. Although we collaborate with RCSB PDB and BMRB in the United States, PDBe and EMDB in Europe and recently PDBc in China for our data-in activities, we have developed our own unique services and tools for searching, exploring, visualizing and analyzing protein structures. We have recently introduced a new UniProt-integrated portal to provide users with a quick overview of their target protein and shows a recommended structure with integrated data from various internal and external resources. The portal page helps users identify known genomic variations of their protein of interest and provide insights into how these modifications might impact the structure, stability and dynamics of the protein. Furthermore, the portal page also helps users to select the optimal structure to use for further analysis. We have also introduced another service to explore proteins using experimental and computational approaches, which enables experimental structural biologists to increase their insight to help them to more efficiently design their experimental studies. With these new additions, we have enhanced our service portfolio to benefit both experimental and computational structural biologists in their search to interpret protein structures, their dynamics and function.
Collapse
Affiliation(s)
| | - Chioko Nagao
- Institute for Protein ResearchOsaka UniversitySuitaJapan
| | - Matsuyuki Shirota
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
- Advanced Research Center for Innovations in Next‐Generation MedicineTohoku UniversitySendaiJapan
- Graduate School of Information SciencesTohoku UniversitySendaiJapan
| | - Tsukasa Nakamura
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Structural Biology Research Center, Institute of Material Structure ScienceHigh Energy Accelerator Research OrganizationTsukubaJapan
| | - Toshiaki Katayama
- Institute for Protein ResearchOsaka UniversitySuitaJapan
- Database Center for Life Science, Joint Support‐Center for Data Science ResearchResearch Organization of Information and SystemsKashiwaJapan
| | - Daisuke Kihara
- Institute for Protein ResearchOsaka UniversitySuitaJapan
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Structural Biology Research Center, Institute of Material Structure ScienceHigh Energy Accelerator Research OrganizationTsukubaJapan
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Kengo Kinoshita
- Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
- Advanced Research Center for Innovations in Next‐Generation MedicineTohoku UniversitySendaiJapan
- Graduate School of Information SciencesTohoku UniversitySendaiJapan
| | - Genji Kurisu
- Institute for Protein ResearchOsaka UniversitySuitaJapan
- Protein Research FoundationMinohJapan
| |
Collapse
|
2
|
Bekker GJ, Nagao C, Shirota M, Nakamura T, Katayama T, Kihara D, Kinoshita K, Kurisu G. Protein Data Bank Japan: Computational Resources for Analysis of Protein Structures. J Mol Biol 2025:169013. [PMID: 40133793 DOI: 10.1016/j.jmb.2025.169013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/27/2025]
Abstract
Protein Data Bank Japan (PDBj, https://pdbj.org/) is the Asian hub of three-dimensional macromolecular structure data, and a founding member of the worldwide Protein Data Bank. We have accepted, processed, and distributed experimentally determined biological macromolecular structures for over two decades. Although we collaborate with RCSB PDB and BMRB in the United States, PDBe and EMDB in Europe and recently PDBc in China for our data-in activities, we have developed our own unique services and tools for searching, exploring, visualizing, and analyzing protein structures. We have also developed novel archives for computational data and raw crystal diffraction images. Recently, we introduced the Sequence Navigator Pro service to explore proteins using experimental and computational approaches, which enables experimental structural biologists to increase their insight to help them to design their experimental studies more efficiently. In addition, we also introduced a new UniProt-integrated portal to provide users with a quick overview of their target protein and it shows a recommended structure and integrates data from various internal and external resources. With these new additions, we have enhanced our service portfolio to benefit both experimental as computational structural biologists in their search to interpret protein structures, their dynamics and function.
Collapse
Affiliation(s)
- Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Chioko Nagao
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Matsuyuki Shirota
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan; Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Tsukasa Nakamura
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Structural Biology Research Center, Institute of Material Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan
| | - Toshiaki Katayama
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Kashiwa, Chiba 277-0871, Japan
| | - Daisuke Kihara
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Structural Biology Research Center, Institute of Material Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 Japan; Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Miyagi 980-8573, Japan; Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Protein Research Foundation, Ina 4-1-2, Minoh, Osaka 562-8686, Japan.
| |
Collapse
|
3
|
Nel L, Thaysen K, Jamecna D, Olesen E, Szomek M, Langer J, Frain KM, Höglinger D, Wüstner D, Pedersen BP. Structural and biochemical analysis of ligand binding in yeast Niemann-Pick type C1-related protein. Life Sci Alliance 2025; 8:e202402990. [PMID: 39455279 PMCID: PMC11512107 DOI: 10.26508/lsa.202402990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
In eukaryotes, integration of sterols into the vacuolar/lysosomal membrane is critically dependent on the Niemann-Pick type C (NPC) system. The system consists of an integral membrane protein, called NCR1 in yeast, and NPC2, a luminal soluble protein that transfers sterols to the N-terminal domain (NTD) of NCR1 before membrane integration. Both proteins have been implicated in sterol homeostasis of yeast and humans. Here, we investigate sterol and lipid binding of the NCR1/NPC2 transport system and determine crystal structures of the sterol binding NTD. The NTD binds both ergosterol and cholesterol, with nearly identical conformations of the binding pocket. Apart from sterols, the NTD can also bind fluorescent analogs of phosphatidylinositol, phosphatidylcholine, and phosphatidylserine, as well as sphingosine and ceramide. We confirm the multi-lipid scope of the NCR1/NPC2 system using photo-crosslinkable and clickable lipid analogs, namely, pac-cholesterol, pac-sphingosine, and pac-ceramide. Finally, we reconstitute the transfer of pac-sphingosine from NPC2 to the NTD in vitro. Collectively, our results support that the yeast NPC system can work as versatile machinery for vacuolar homeostasis of structurally diverse lipids, besides ergosterol.
Collapse
Affiliation(s)
- Lynette Nel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Katja Thaysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Denisa Jamecna
- Heidelberg University, Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Esben Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Julia Langer
- Heidelberg University, Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Kelly M Frain
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Doris Höglinger
- Heidelberg University, Biochemistry Center, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Bjørn P Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Bekker GJ, Fukunishi Y, Higo J, Kamiya N. Binding Mechanism of Riboswitch to Natural Ligand Elucidated by McMD-Based Dynamic Docking Simulations. ACS OMEGA 2024; 9:3412-3422. [PMID: 38284074 PMCID: PMC10809319 DOI: 10.1021/acsomega.3c06826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
Flavin mononucleotide riboswitches are common among many pathogenic bacteria and are therefore considered to be an attractive target for antibiotics development. The riboswitch binds riboflavin (RBF, also known as vitamin B2), and although an experimental structure of their complex has been solved with the ligand bound deep inside the RNA molecule in a seemingly unreachable state, the binding mechanism between these molecules is not yet known. We have therefore used our Multicanonical Molecular Dynamics (McMD)-based dynamic docking protocol to analyze their binding mechanism by simulating the binding process between the riboswitch aptamer domain and the RBF, starting from the apo state of the riboswitch. Here, the refinement stage was crucial to identify the native binding configuration, as several other binding configurations were also found by McMD-based docking simulations. RBF initially binds the interface between P4 and P6 including U61 and G62, which forms a gateway where the ligand lingers until this gateway opens sufficiently to allow the ligand to pass through and slip into the hidden binding site including A48, A49, and A85.
Collapse
Affiliation(s)
- Gert-Jan Bekker
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Fukunishi
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Junichi Higo
- Graduate
School of Information Science, University
of Hyogo, 7-1-28 minatojima
Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Narutoshi Kamiya
- Graduate
School of Information Science, University
of Hyogo, 7-1-28 minatojima
Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
5
|
Oda M. Analysis of the Structural Dynamics of Proteins in the Ligand-Unbound and -Bound States by Diffracted X-ray Tracking. Int J Mol Sci 2023; 24:13717. [PMID: 37762021 PMCID: PMC10531450 DOI: 10.3390/ijms241813717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Although many protein structures have been determined at atomic resolution, the majority of them are static and represent only the most stable or averaged structures in solution. When a protein binds to its ligand, it usually undergoes fluctuation and changes its conformation. One attractive method for obtaining an accurate view of proteins in solution, which is required for applications such as the rational design of proteins and structure-based drug design, is diffracted X-ray tracking (DXT). DXT can detect the protein structural dynamics on a timeline via gold nanocrystals attached to the protein. Here, the structure dynamics of single-chain Fv antibodies, helix bundle-forming de novo designed proteins, and DNA-binding proteins in both ligand-unbound and ligand-bound states were analyzed using the DXT method. The resultant mean square angular displacements (MSD) curves in both the tilting and twisting directions clearly demonstrated that structural fluctuations were suppressed upon ligand binding, and the binding energies determined using the angular diffusion coefficients from the MSD agreed well with the binding thermodynamics determined using isothermal titration calorimetry. In addition, the size of gold nanocrystals is discussed, which is one of the technical concerns of DXT.
Collapse
Affiliation(s)
- Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
6
|
Basu G, Sudo Y, Berliner L, Shaitan K, Hall D. Editors' Roundup: June 2023. Biophys Rev 2023; 15:307-311. [PMID: 37396446 PMCID: PMC10310647 DOI: 10.1007/s12551-023-01077-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
This commentary article represents the latest edition of the Biophysical Reviews 'Editors' Roundup' Series - a platform made available to the editorial board members of any journal with a genuine interest in promoting biophysical content. Each journal associated editor is able to submit a short description of up to five articles recently appearing in their journals with an explanation of why these articles are of interest. This edition (Vol. 15 Issue 3 June 2023) carries contributions from editorial members associated with Biophysics and Physicobiology (Biophysical Society of Japan), Biophysics (Russian Academy of Sciences), Cell Biochemistry and Biophysics (Springer), and Biophysical Reviews (IUPAB-International Union for Pure and Applied Biophysics).
Collapse
Affiliation(s)
- Gautam Basu
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12 C.I.T. Scheme VII-M, Kolkata, 700054 India
| | - Yuki Sudo
- Medicine, Dentistry and Pharmaceutical Sciences, Institute of Acadmic and Research, Okayama University, Kita-ku, Okayama, 700-8534 Japan
| | - Lawrence Berliner
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO USA
| | | | - Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
| |
Collapse
|
7
|
Hall D, Basu G, Ito N. Computational biophysics and structural biology of proteins-a Special Issue in honor of Prof. Haruki Nakamura's 70th birthday. Biophys Rev 2022; 14:1211-1222. [PMID: 36620377 PMCID: PMC9809522 DOI: 10.1007/s12551-022-01039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Receiving his initial training jointly in theoretical and applied physics at the University of Tokyo, Professor Haruki Nakamura has had a long and eventful scientific career, along the way helping to shape the way that biophysics is carried out in Japan. Concentrating his research efforts on the simulation of protein structure and function, he has, over his career arc, acted as director of the Institute for Protein Research (Osaka, Japan), director of the Protein Data Bank of Japan (PDBj), president of the Biophysical Society of Japan (BSJ), president of the Protein Science Society of Japan (PSSJ), and group leader and professor of Bioinformatics and Computational Structural Biology at Osaka University. In 2022, Prof. Haruki Nakamura turned 70 years old, and to mark this occasion, his scientific colleagues from around the world have combined their efforts to produce this Festschrift Issue of the IUPAB Biophysical Reviews journal around the theme of the computational biophysics and structural biology of proteins.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Gautam Basu
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12 C.I.T. Scheme VII-M, Kolkata, 700054 India
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| |
Collapse
|
8
|
Nakamura H. Some reflections on a career in science and a note of thanks to the contributors of this Special Issue. Biophys Rev 2022; 14:1223-1226. [PMID: 36659991 PMCID: PMC9842830 DOI: 10.1007/s12551-022-01035-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|