1
|
Xu HL, Gong TT, Song XJ, Chen Q, Bao Q, Yao W, Xie MM, Li C, Grzegorzek M, Shi Y, Sun HZ, Li XH, Zhao YH, Gao S, Wu QJ. Artificial Intelligence Performance in Image-Based Cancer Identification: Umbrella Review of Systematic Reviews. J Med Internet Res 2025; 27:e53567. [PMID: 40167239 PMCID: PMC12000792 DOI: 10.2196/53567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/30/2024] [Accepted: 11/11/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI) has the potential to transform cancer diagnosis, ultimately leading to better patient outcomes. OBJECTIVE We performed an umbrella review to summarize and critically evaluate the evidence for the AI-based imaging diagnosis of cancers. METHODS PubMed, Embase, Web of Science, Cochrane, and IEEE databases were searched for relevant systematic reviews from inception to June 19, 2024. Two independent investigators abstracted data and assessed the quality of evidence, using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Systematic Reviews and Research Syntheses. We further assessed the quality of evidence in each meta-analysis by applying the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria. Diagnostic performance data were synthesized narratively. RESULTS In a comprehensive analysis of 158 included studies evaluating the performance of AI algorithms in noninvasive imaging diagnosis across 8 major human system cancers, the accuracy of the classifiers for central nervous system cancers varied widely (ranging from 48% to 100%). Similarities were observed in the diagnostic performance for cancers of the head and neck, respiratory system, digestive system, urinary system, female-related systems, skin, and other sites. Most meta-analyses demonstrated positive summary performance. For instance, 9 reviews meta-analyzed sensitivity and specificity for esophageal cancer, showing ranges of 90%-95% and 80%-93.8%, respectively. In the case of breast cancer detection, 8 reviews calculated the pooled sensitivity and specificity within the ranges of 75.4%-92% and 83%-90.6%, respectively. Four meta-analyses reported the ranges of sensitivity and specificity in ovarian cancer, and both were 75%-94%. Notably, in lung cancer, the pooled specificity was relatively low, primarily distributed between 65% and 80%. Furthermore, 80.4% (127/158) of the included studies were of high quality according to the JBI Critical Appraisal Checklist, with the remaining studies classified as medium quality. The GRADE assessment indicated that the overall quality of the evidence was moderate to low. CONCLUSIONS Although AI shows great potential for achieving accelerated, accurate, and more objective diagnoses of multiple cancers, there are still hurdles to overcome before its implementation in clinical settings. The present findings highlight that a concerted effort from the research community, clinicians, and policymakers is required to overcome existing hurdles and translate this potential into improved patient outcomes and health care delivery. TRIAL REGISTRATION PROSPERO CRD42022364278; https://www.crd.york.ac.uk/PROSPERO/view/CRD42022364278.
Collapse
Affiliation(s)
- He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Jian Song
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Bao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wei Yao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meng-Meng Xie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Marcin Grzegorzek
- Institute for Medical Informatics, University of Luebeck, Luebeck, Germany
| | - Yu Shi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Zan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Han Li
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| |
Collapse
|
2
|
Berghout T. The Neural Frontier of Future Medical Imaging: A Review of Deep Learning for Brain Tumor Detection. J Imaging 2024; 11:2. [PMID: 39852315 PMCID: PMC11766058 DOI: 10.3390/jimaging11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Brain tumor detection is crucial in medical research due to high mortality rates and treatment challenges. Early and accurate diagnosis is vital for improving patient outcomes, however, traditional methods, such as manual Magnetic Resonance Imaging (MRI) analysis, are often time-consuming and error-prone. The rise of deep learning has led to advanced models for automated brain tumor feature extraction, segmentation, and classification. Despite these advancements, comprehensive reviews synthesizing recent findings remain scarce. By analyzing over 100 research papers over past half-decade (2019-2024), this review fills that gap, exploring the latest methods and paradigms, summarizing key concepts, challenges, datasets, and offering insights into future directions for brain tumor detection using deep learning. This review also incorporates an analysis of previous reviews and targets three main aspects: feature extraction, segmentation, and classification. The results revealed that research primarily focuses on Convolutional Neural Networks (CNNs) and their variants, with a strong emphasis on transfer learning using pre-trained models. Other methods, such as Generative Adversarial Networks (GANs) and Autoencoders, are used for feature extraction, while Recurrent Neural Networks (RNNs) are employed for time-sequence modeling. Some models integrate with Internet of Things (IoT) frameworks or federated learning for real-time diagnostics and privacy, often paired with optimization algorithms. However, the adoption of eXplainable AI (XAI) remains limited, despite its importance in building trust in medical diagnostics. Finally, this review outlines future opportunities, focusing on image quality, underexplored deep learning techniques, expanding datasets, and exploring deeper learning representations and model behavior such as recurrent expansion to advance medical imaging diagnostics.
Collapse
Affiliation(s)
- Tarek Berghout
- Laboratory of Automation and Manufacturing Engineering, Department of Industrial Engineering, Batna 2 University, Batna 05000, Algeria
| |
Collapse
|
3
|
Nag S, Basu N, Bose P, Bandyopadhyay SK. A Novel Grammar-Based Approach for Patients' Symptom and Disease Diagnosis Information Dissemination to Maintain Confidentiality and Information Integrity. Bioengineering (Basel) 2024; 11:1265. [PMID: 39768084 PMCID: PMC11673805 DOI: 10.3390/bioengineering11121265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Disease prediction using computer-based methods is now an established area of research. The importance of technological intervention is necessary for the better management of disease, as well as to optimize use of limited resources. Various AI-based methods for disease prediction have been documented in the literature. Validated AI-based systems support diagnoses and decision making by doctors/medical practitioners. The resource-efficient dissemination of the symptoms identified and the diagnoses undertaken is the requirement of the present-day scenario to support paperless, yet seamless, information sharing. The representation of symptoms using grammar provides a novel way for the resource-efficient encoding of disease diagnoses. Initially, symptoms are represented as strings, and, in terms of grammar, this is called a sentence. Moreover, the conversion of the generated string containing the symptoms and the diagnostic outcome to a QR code post encryption makes it portable. The code can be stored in a mobile application, in a secure manner, and can be scanned wherever required, universally. The patient can carry the medical condition and the diagnosis in the form of the QR code for medical consultations. This research work presents a case study based on two diseases, influenza and coronavirus, to highlight the proposed methodology. Both diseases have some common and overlapping symptoms. The proposed system can be implemented for any kind of disease detection, including clinical and diagnostic imaging.
Collapse
Affiliation(s)
- Sanjay Nag
- Department of Computer Science and Engineering, Swami Vivekananda University, Barrackpore, Kolkata 7000121, India; (S.N.); (P.B.)
| | - Nabanita Basu
- Department of Applied Sciences, Northumbria University, Newcastle NE1 8ST, UK
| | - Payal Bose
- Department of Computer Science and Engineering, Swami Vivekananda University, Barrackpore, Kolkata 7000121, India; (S.N.); (P.B.)
| | | |
Collapse
|
4
|
S SP, A S, T K, S D. Self-attention-based generative adversarial network optimized with color harmony algorithm for brain tumor classification. Electromagn Biol Med 2024:1-15. [PMID: 38369844 DOI: 10.1080/15368378.2024.2312363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
This paper proposes a novel approach, BTC-SAGAN-CHA-MRI, for the classification of brain tumors using a SAGAN optimized with a Color Harmony Algorithm. Brain cancer, with its high fatality rate worldwide, especially in the case of brain tumors, necessitates more accurate and efficient classification methods. While existing deep learning approaches for brain tumor classification have been suggested, they often lack precision and require substantial computational time.The proposed method begins by gathering input brain MR images from the BRATS dataset, followed by a pre-processing step using a Mean Curvature Flow-based approach to eliminate noise. The pre-processed images then undergo the Improved Non-Sub sampled Shearlet Transform (INSST) for extracting radiomic features. These features are fed into the SAGAN, which is optimized with a Color Harmony Algorithm to categorize the brain images into different tumor types, including Gliomas, Meningioma, and Pituitary tumors. This innovative approach shows promise in enhancing the precision and efficiency of brain tumor classification, holding potential for improved diagnostic outcomes in the field of medical imaging. The accuracy acquired for the brain tumor identification from the proposed method is 99.29%. The proposed BTC-SAGAN-CHA-MRI technique achieves 18.29%, 14.09% and 7.34% higher accuracy and 67.92%,54.04%, and 59.08% less Computation Time when analyzed to the existing models, like Brain tumor diagnosis utilizing deep learning convolutional neural network with transfer learning approach (BTC-KNN-SVM-MRI); M3BTCNet: multi model brain tumor categorization under metaheuristic deep neural network features optimization (BTC-CNN-DEMFOA-MRI), and efficient method depending upon hierarchical deep learning neural network classifier for brain tumour categorization (BTC-Hie DNN-MRI) respectively.
Collapse
Affiliation(s)
- Senthil Pandi S
- Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, Tamil Nadu, India
| | - Senthilselvi A
- Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Kumaragurubaran T
- Department of Computer Science and Engineering, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India
| | - Dhanasekaran S
- Department of Information Technology, Kalasalingam Academy of Research and Education (Deemed to be University), Srivilliputtur, Tamilnadu, India
| |
Collapse
|
5
|
Wang J, Yin L. CNN-based glioma detection in MRI: A deep learning approach. Technol Health Care 2024; 32:4965-4982. [PMID: 39031408 PMCID: PMC11612952 DOI: 10.3233/thc-240158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/13/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND More than a million people are affected by brain tumors each year; high-grade gliomas (HGGs) and low-grade gliomas (LGGs) present serious diagnostic and treatment hurdles, resulting in shortened life expectancies. Glioma segmentation is still a significant difficulty in clinical settings, despite improvements in Magnetic Resonance Imaging (MRI) and diagnostic tools. Convolutional neural networks (CNNs) have seen recent advancements that offer promise for increasing segmentation accuracy, addressing the pressing need for improved diagnostic and therapeutic approaches. OBJECTIVE The study intended to develop an automated glioma segmentation algorithm using CNN to accurately identify tumor components in MRI images. The goal was to match the accuracy of experienced radiologists with commercial instruments, hence improving diagnostic precision and quantification. METHODS 285 MRI scans of high-grade gliomas (HGGs) and low-grade gliomas (LGGs) were analyzed in the study. T1-weighted sequences were utilised for segmentation both pre-and post-contrast agent administration, along with T2-weighted sequences (with and without Fluid Attenuation by Inversion Recovery [FAIRE]). The segmentation performance was assessed with a U-Net network, renowned for its efficacy in medical image segmentation. DICE coefficients were computed for the tumour core with contrast enhancement, the entire tumour, and the tumour nucleus without contrast enhancement. RESULTS The U-Net network produced DICE values of 0.7331 for the tumour core with contrast enhancement, 0.8624 for the total tumour, and 0.7267 for the tumour nucleus without contrast enhancement. The results align with previous studies, demonstrating segmentation accuracy on par with professional radiologists and commercially accessible segmentation tools. CONCLUSION The study developed a CNN-based automated segmentation system for gliomas, achieving high accuracy in recognising glioma components in MRI images. The results confirm the ability of CNNs to enhance the accuracy of brain tumour diagnoses, suggesting a promising avenue for future research in medical imaging and diagnostics. This advancement is expected to improve diagnostic processes for clinicians and patients by providing more precise and quantitative results.
Collapse
Affiliation(s)
- Jing Wang
- Medical Imaging Center, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Liang Yin
- Medical Imaging Center, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Li M, Jiang Y, Zhang Y, Zhu H. Medical image analysis using deep learning algorithms. Front Public Health 2023; 11:1273253. [PMID: 38026291 PMCID: PMC10662291 DOI: 10.3389/fpubh.2023.1273253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
In the field of medical image analysis within deep learning (DL), the importance of employing advanced DL techniques cannot be overstated. DL has achieved impressive results in various areas, making it particularly noteworthy for medical image analysis in healthcare. The integration of DL with medical image analysis enables real-time analysis of vast and intricate datasets, yielding insights that significantly enhance healthcare outcomes and operational efficiency in the industry. This extensive review of existing literature conducts a thorough examination of the most recent deep learning (DL) approaches designed to address the difficulties faced in medical healthcare, particularly focusing on the use of deep learning algorithms in medical image analysis. Falling all the investigated papers into five different categories in terms of their techniques, we have assessed them according to some critical parameters. Through a systematic categorization of state-of-the-art DL techniques, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), Long Short-term Memory (LSTM) models, and hybrid models, this study explores their underlying principles, advantages, limitations, methodologies, simulation environments, and datasets. Based on our results, Python was the most frequent programming language used for implementing the proposed methods in the investigated papers. Notably, the majority of the scrutinized papers were published in 2021, underscoring the contemporaneous nature of the research. Moreover, this review accentuates the forefront advancements in DL techniques and their practical applications within the realm of medical image analysis, while simultaneously addressing the challenges that hinder the widespread implementation of DL in image analysis within the medical healthcare domains. These discerned insights serve as compelling impetuses for future studies aimed at the progressive advancement of image analysis in medical healthcare research. The evaluation metrics employed across the reviewed articles encompass a broad spectrum of features, encompassing accuracy, sensitivity, specificity, F-score, robustness, computational complexity, and generalizability.
Collapse
Affiliation(s)
- Mengfang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanzhou Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haisheng Zhu
- Department of Cardiovascular Medicine, Wencheng People’s Hospital, Wencheng, China
| |
Collapse
|
7
|
Srivastava J, Prakash J, Srivastava A. Hybrid deep learning algorithm for brain tumour detection. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2023.2167624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jyoti Srivastava
- Department of ITCA, Madan Mohan Malaviya University of Technology, Gorakhpur, UP, India
| | - Jay Prakash
- Department of ITCA, Madan Mohan Malaviya University of Technology, Gorakhpur, UP, India
| | - Ashish Srivastava
- Department of Computer Engineering & Application, GLA University, Mathura, UP, India
| |
Collapse
|
8
|
Abstract
Medical imaging is a great asset for modern medicine, since it allows physicians to spatially interrogate a disease site, resulting in precise intervention for diagnosis and treatment, and to observe particular aspect of patients' conditions that otherwise would not be noticeable. Computational analysis of medical images, moreover, can allow the discovery of disease patterns and correlations among cohorts of patients with the same disease, thus suggesting common causes or providing useful information for better therapies and cures. Machine learning and deep learning applied to medical images, in particular, have produced new, unprecedented results that can pave the way to advanced frontiers of medical discoveries. While computational analysis of medical images has become easier, however, the possibility to make mistakes or generate inflated or misleading results has become easier, too, hindering reproducibility and deployment. In this article, we provide ten quick tips to perform computational analysis of medical images avoiding common mistakes and pitfalls that we noticed in multiple studies in the past. We believe our ten guidelines, if taken into practice, can help the computational-medical imaging community to perform better scientific research that eventually can have a positive impact on the lives of patients worldwide.
Collapse
Affiliation(s)
- Davide Chicco
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Rakesh Shiradkar
- Department of Biomedical Engineering, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
ZainEldin H, Gamel SA, El-Kenawy ESM, Alharbi AH, Khafaga DS, Ibrahim A, Talaat FM. Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010018. [PMID: 36671591 PMCID: PMC9854739 DOI: 10.3390/bioengineering10010018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Diagnosing a brain tumor takes a long time and relies heavily on the radiologist's abilities and experience. The amount of data that must be handled has increased dramatically as the number of patients has increased, making old procedures both costly and ineffective. Many researchers investigated a variety of algorithms for detecting and classifying brain tumors that were both accurate and fast. Deep Learning (DL) approaches have recently been popular in developing automated systems capable of accurately diagnosing or segmenting brain tumors in less time. DL enables a pre-trained Convolutional Neural Network (CNN) model for medical images, specifically for classifying brain cancers. The proposed Brain Tumor Classification Model based on CNN (BCM-CNN) is a CNN hyperparameters optimization using an adaptive dynamic sine-cosine fitness grey wolf optimizer (ADSCFGWO) algorithm. There is an optimization of hyperparameters followed by a training model built with Inception-ResnetV2. The model employs commonly used pre-trained models (Inception-ResnetV2) to improve brain tumor diagnosis, and its output is a binary 0 or 1 (0: Normal, 1: Tumor). There are primarily two types of hyperparameters: (i) hyperparameters that determine the underlying network structure; (ii) a hyperparameter that is responsible for training the network. The ADSCFGWO algorithm draws from both the sine cosine and grey wolf algorithms in an adaptable framework that uses both algorithms' strengths. The experimental results show that the BCM-CNN as a classifier achieved the best results due to the enhancement of the CNN's performance by the CNN optimization's hyperparameters. The BCM-CNN has achieved 99.98% accuracy with the BRaTS 2021 Task 1 dataset.
Collapse
Affiliation(s)
- Hanaa ZainEldin
- Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - Samah A. Gamel
- Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
| | - El-Sayed M. El-Kenawy
- Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt
- Correspondence: (E.-S.M.E.-K.); (D.S.K.); (A.I.)
| | - Amal H. Alharbi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Doaa Sami Khafaga
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence: (E.-S.M.E.-K.); (D.S.K.); (A.I.)
| | - Abdelhameed Ibrahim
- Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (E.-S.M.E.-K.); (D.S.K.); (A.I.)
| | - Fatma M. Talaat
- Machine Learning & Information Retrieval Department, Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| |
Collapse
|
10
|
Yu Z, Wang K, Wan Z, Xie S, Lv Z. Popular deep learning algorithms for disease prediction: a review. CLUSTER COMPUTING 2022; 26:1231-1251. [PMID: 36120180 PMCID: PMC9469816 DOI: 10.1007/s10586-022-03707-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Due to its automatic feature learning ability and high performance, deep learning has gradually become the mainstream of artificial intelligence in recent years, playing a role in many fields. Especially in the medical field, the accuracy rate of deep learning even exceeds that of doctors. This paper introduces several deep learning algorithms: Artificial Neural Network (NN), FM-Deep Learning, Convolutional NN and Recurrent NN, and expounds their theory, development history and applications in disease prediction; we analyze the defects in the current disease prediction field and give some current solutions; our paper expounds the two major trends in the future disease prediction and medical field-integrating Digital Twins and promoting precision medicine. This study can better inspire relevant researchers, so that they can use this article to understand related disease prediction algorithms and then make better related research.
Collapse
Affiliation(s)
- Zengchen Yu
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071 China
| | - Ke Wang
- Psychiatric Department, Qingdao Municipal Hospital, Zhuhai Road, Qingdao, 266071 China
| | - Zhibo Wan
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071 China
| | - Shuxuan Xie
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071 China
| | - Zhihan Lv
- Department of Game Design, Faculty of Arts, Uppsala University, 75105 Uppsala, Sweden
| |
Collapse
|
11
|
Kumar A. Study and analysis of different segmentation methods for brain tumor MRI application. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:7117-7139. [PMID: 35991584 PMCID: PMC9379244 DOI: 10.1007/s11042-022-13636-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 04/26/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Medical Resonance Imaging (MRI) is one of the preferred imaging methods for brain tumor diagnosis and getting detailed information on tumor type, location, size, identification, and detection. Segmentation divides an image into multiple segments and describes the separation of the suspicious region from pre-processed MRI images to make the simpler image that is more meaningful and easier to examine. There are many segmentation methods, embedded with detection devices, and the response of each method is different. The study article focuses on comparing the performance of several image segmentation algorithms for brain tumor diagnosis, such as Otsu's, watershed, level set, K-means, HAAR Discrete Wavelet Transform (DWT), and Convolutional Neural Network (CNN). All of the techniques are simulated in MATLAB using online images from the Brain Tumor Image Segmentation Benchmark (BRATS) dataset-2018. The performance of these methods is analyzed based on response time and measures such as recall, precision, F-measures, and accuracy. The measured accuracy of Otsu's, watershed, level set, K-means, DWT, and CNN methods is 71.42%, 78.26%, 80.45%, 84.34%, 86.95%, and 91.39 respectively. The response time of CNN is 2.519 s in the MATLAB simulation environment for the designed algorithm. The novelty of the work is that CNN has been proven the best algorithm in comparison to all other methods for brain tumor image segmentation. The simulated and estimated parameters provide the direction to researchers to choose the specific algorithm for embedded hardware solutions and develop the optimal machine-learning models, as the industries are looking for the optimal solutions of CNN and deep learning-based hardware models for the brain tumor.
Collapse
Affiliation(s)
- Adesh Kumar
- Department of Electrical and Electronics Engineering, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| |
Collapse
|
12
|
Tozzi AE, Fabozzi F, Eckley M, Croci I, Dell’Anna VA, Colantonio E, Mastronuzzi A. Gaps and Opportunities of Artificial Intelligence Applications for Pediatric Oncology in European Research: A Systematic Review of Reviews and a Bibliometric Analysis. Front Oncol 2022; 12:905770. [PMID: 35712463 PMCID: PMC9194810 DOI: 10.3389/fonc.2022.905770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
The application of artificial intelligence (AI) systems is emerging in many fields in recent years, due to the increased computing power available at lower cost. Although its applications in various branches of medicine, such as pediatric oncology, are many and promising, its use is still in an embryonic stage. The aim of this paper is to provide an overview of the state of the art regarding the AI application in pediatric oncology, through a systematic review of systematic reviews, and to analyze current trends in Europe, through a bibliometric analysis of publications written by European authors. Among 330 records found, 25 were included in the systematic review. All papers have been published since 2017, demonstrating only recent attention to this field. The total number of studies included in the selected reviews was 674, with a third including an author with a European affiliation. In bibliometric analysis, 304 out of the 978 records found were included. Similarly, the number of publications began to dramatically increase from 2017. Most explored AI applications regard the use of diagnostic images, particularly radiomics, as well as the group of neoplasms most involved are the central nervous system tumors. No evidence was found regarding the use of AI for process mining, clinical pathway modeling, or computer interpreted guidelines to improve the healthcare process. No robust evidence is yet available in any of the domains investigated by systematic reviews. However, the scientific production in Europe is significant and consistent with the topics covered in systematic reviews at the global level. The use of AI in pediatric oncology is developing rapidly with promising results, but numerous gaps and challenges persist to validate its utilization in clinical practice. An important limitation is the need for large datasets for training algorithms, calling for international collaborative studies.
Collapse
Affiliation(s)
- Alberto Eugenio Tozzi
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Fabozzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Megan Eckley
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ileana Croci
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vito Andrea Dell’Anna
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Erica Colantonio
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
13
|
Jaber MM, Abd SK, Ali SM. Adam Optimized Deep Learning Model for Segmenting ROI Region in Medical Imaging. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND INTELLIGENT SYSTEMS 2022:669-691. [DOI: 10.1007/978-3-030-85990-9_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|