1
|
Padmavathi V, Ganesan K. Metaheuristic optimizers integrated with vision transformer model for severity detection and classification via multimodal COVID-19 images. Sci Rep 2025; 15:13941. [PMID: 40263404 PMCID: PMC12015488 DOI: 10.1038/s41598-025-98593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
This study introduces a novel hybrid framework for classifying COVID-19 severity using chest X-rays (CXR) and computed tomography (CT) scans by integrating Vision Transformers (ViT) with metaheuristic optimization techniques. The framework employs the Grey Wolf Optimizer (GWO) for hyperparameter tuning and Particle Swarm Optimization (PSO) for feature selection, leveraging the ViT model's self-attention mechanism to extract global and local image features crucial for severity classification. A multi-phase classification strategy refines predictions by progressively distinguishing normal, mild, moderate, and severe COVID-19 cases. The proposed GWO_ViT_PSO_MLP model achieves outstanding accuracy, with 99.14% for 2-class CXR classification and 98.89% for 2-class CT classification, outperforming traditional CNN-based approaches such as ResNet34 (84.22%) and VGG19 (93.24%). Furthermore, it demonstrates superior performance in multi-class severity classification, especially in differentiating challenging cases like mild and moderate infections. Compared to existing studies, this framework significantly improves accuracy and computational efficiency, highlighting its potential as a scalable and reliable solution for automated COVID-19 severity detection in clinical applications.
Collapse
Affiliation(s)
- V Padmavathi
- Department of Biomedical Engineering, CEG Campus, Anna University, Chennai, 600025, India
| | - Kavitha Ganesan
- Department of Biomedical Engineering, CEG Campus, Anna University, Chennai, 600025, India.
| |
Collapse
|
2
|
Mao S, Kulbayeva S, Osadchuk M. Chest x-ray images: transfer learning model in COVID-19 detection. J Eval Clin Pract 2025; 31:e14215. [PMID: 39462985 DOI: 10.1111/jep.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE, AIMS AND OBJECTIVES This research aims to develop an effective algorithm for diagnosing COVID-19 in chest X-rays using the transfer learning method and support vector machines. METHOD In total, data was collected from 10 clinics, including both large city hospitals and smaller medical institutions. This ensured a diverse range of geographical and demographic information in the sample. An extensive data set was collected, including 10,000 chest X-ray images. 5000 images represent normal cases, 3993 images represent pneumonia cases, and 1007 images represent COVID-19 cases. Machine learning methods were applied to develop a classification model, and the results were compared with seven state-of-the-art models and a lightweight CNN architecture. RESULTS The results showed that the proposed method achieves high accuracy values (Accuracy): 0.95 for COVID-19, 0.89 for pneumonia, and 0.92 for normal images (p < 0.05). Comparison with other models demonstrates statistically significant superiority of our method in accuracy across all three classes. The EfficientNet-B0 model surpasses our method only in accuracy for normal images with p < 0.01, confirming the advantages of our method. Our method demonstrates high sensitivity values (Sensitivity): 0.96 for COVID-19, 0.88 for pneumonia, and 0.93 for normal images (p < 0.05), outperforming most of the compared models. Correlation analysis showed Pearson coefficients of 0.92, 0.89, and 0.94 for COVID-19, pneumonia, and normal images, respectively, confirming a high degree of consistency between predicted and true class labels. In addition, the model was validated on external datasets to assess its generalizability. This validation confirmed its high level of effectiveness in a variety of clinical settings. CONCLUSION This study confirms the importance of applying machine learning methods in medical applications and opens new perspectives for early diagnosis of infectious diseases. The practical application of the obtained results can enhance the efficiency of diagnosis and control the spread of COVID-19, as well as contribute to the development of innovative methods in medical practice.
Collapse
Affiliation(s)
- Siqi Mao
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Saltanat Kulbayeva
- Department of Obstetrics and Gynaecology, JSC South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Mikhail Osadchuk
- Department of Polyclinic Therapy, Institute of Clinical Medicine named after N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
3
|
Kumar S, Kumar H, Kumar G, Singh SP, Bijalwan A, Diwakar M. A methodical exploration of imaging modalities from dataset to detection through machine learning paradigms in prominent lung disease diagnosis: a review. BMC Med Imaging 2024; 24:30. [PMID: 38302883 PMCID: PMC10832080 DOI: 10.1186/s12880-024-01192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Lung diseases, both infectious and non-infectious, are the most prevalent cause of mortality overall in the world. Medical research has identified pneumonia, lung cancer, and Corona Virus Disease 2019 (COVID-19) as prominent lung diseases prioritized over others. Imaging modalities, including X-rays, computer tomography (CT) scans, magnetic resonance imaging (MRIs), positron emission tomography (PET) scans, and others, are primarily employed in medical assessments because they provide computed data that can be utilized as input datasets for computer-assisted diagnostic systems. Imaging datasets are used to develop and evaluate machine learning (ML) methods to analyze and predict prominent lung diseases. OBJECTIVE This review analyzes ML paradigms, imaging modalities' utilization, and recent developments for prominent lung diseases. Furthermore, the research also explores various datasets available publically that are being used for prominent lung diseases. METHODS The well-known databases of academic studies that have been subjected to peer review, namely ScienceDirect, arXiv, IEEE Xplore, MDPI, and many more, were used for the search of relevant articles. Applied keywords and combinations used to search procedures with primary considerations for review, such as pneumonia, lung cancer, COVID-19, various imaging modalities, ML, convolutional neural networks (CNNs), transfer learning, and ensemble learning. RESULTS This research finding indicates that X-ray datasets are preferred for detecting pneumonia, while CT scan datasets are predominantly favored for detecting lung cancer. Furthermore, in COVID-19 detection, X-ray datasets are prioritized over CT scan datasets. The analysis reveals that X-rays and CT scans have surpassed all other imaging techniques. It has been observed that using CNNs yields a high degree of accuracy and practicability in identifying prominent lung diseases. Transfer learning and ensemble learning are complementary techniques to CNNs to facilitate analysis. Furthermore, accuracy is the most favored metric for assessment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Computer Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, India
- Department of Information Technology, School of Engineering and Technology (UIET), CSJM University, Kanpur, India
| | - Harish Kumar
- Department of Computer Engineering, J. C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Gyanendra Kumar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | | | - Anchit Bijalwan
- Faculty of Electrical and Computer Engineering, Arba Minch University, Arba Minch, Ethiopia.
| | - Manoj Diwakar
- Department of Computer Science and Engineering, Graphic Era Deemed to Be University, Dehradun, India
| |
Collapse
|
4
|
Das S, Ayus I, Gupta D. A comprehensive review of COVID-19 detection with machine learning and deep learning techniques. HEALTH AND TECHNOLOGY 2023; 13:1-14. [PMID: 37363343 PMCID: PMC10244837 DOI: 10.1007/s12553-023-00757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/14/2023] [Indexed: 06/28/2023]
Abstract
Purpose The first transmission of coronavirus to humans started in Wuhan city of China, took the shape of a pandemic called Corona Virus Disease 2019 (COVID-19), and posed a principal threat to the entire world. The researchers are trying to inculcate artificial intelligence (Machine learning or deep learning models) for the efficient detection of COVID-19. This research explores all the existing machine learning (ML) or deep learning (DL) models, used for COVID-19 detection which may help the researcher to explore in different directions. The main purpose of this review article is to present a compact overview of the application of artificial intelligence to the research experts, helping them to explore the future scopes of improvement. Methods The researchers have used various machine learning, deep learning, and a combination of machine and deep learning models for extracting significant features and classifying various health conditions in COVID-19 patients. For this purpose, the researchers have utilized different image modalities such as CT-Scan, X-Ray, etc. This study has collected over 200 research papers from various repositories like Google Scholar, PubMed, Web of Science, etc. These research papers were passed through various levels of scrutiny and finally, 50 research articles were selected. Results In those listed articles, the ML / DL models showed an accuracy of 99% and above while performing the classification of COVID-19. This study has also presented various clinical applications of various research. This study specifies the importance of various machine and deep learning models in the field of medical diagnosis and research. Conclusion In conclusion, it is evident that ML/DL models have made significant progress in recent years, but there are still limitations that need to be addressed. Overfitting is one such limitation that can lead to incorrect predictions and overburdening of the models. The research community must continue to work towards finding ways to overcome these limitations and make machine and deep learning models even more effective and efficient. Through this ongoing research and development, we can expect even greater advances in the future.
Collapse
Affiliation(s)
- Sreeparna Das
- Department of Computer Science and Engineering, National Institute of Technology Arunachal Pradesh, Jote, Arunachal Pradesh 791113 India
| | - Ishan Ayus
- Department of Computer Science and Engineering, ITER, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha 751030 India
| | - Deepak Gupta
- Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP 211004 India
| |
Collapse
|
5
|
Sailunaz K, Özyer T, Rokne J, Alhajj R. A survey of machine learning-based methods for COVID-19 medical image analysis. Med Biol Eng Comput 2023; 61:1257-1297. [PMID: 36707488 PMCID: PMC9883138 DOI: 10.1007/s11517-022-02758-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/22/2022] [Indexed: 01/29/2023]
Abstract
The ongoing COVID-19 pandemic caused by the SARS-CoV-2 virus has already resulted in 6.6 million deaths with more than 637 million people infected after only 30 months since the first occurrences of the disease in December 2019. Hence, rapid and accurate detection and diagnosis of the disease is the first priority all over the world. Researchers have been working on various methods for COVID-19 detection and as the disease infects lungs, lung image analysis has become a popular research area for detecting the presence of the disease. Medical images from chest X-rays (CXR), computed tomography (CT) images, and lung ultrasound images have been used by automated image analysis systems in artificial intelligence (AI)- and machine learning (ML)-based approaches. Various existing and novel ML, deep learning (DL), transfer learning (TL), and hybrid models have been applied for detecting and classifying COVID-19, segmentation of infected regions, assessing the severity, and tracking patient progress from medical images of COVID-19 patients. In this paper, a comprehensive review of some recent approaches on COVID-19-based image analyses is provided surveying the contributions of existing research efforts, the available image datasets, and the performance metrics used in recent works. The challenges and future research scopes to address the progress of the fight against COVID-19 from the AI perspective are also discussed. The main objective of this paper is therefore to provide a summary of the research works done in COVID detection and analysis from medical image datasets using ML, DL, and TL models by analyzing their novelty and efficiency while mentioning other COVID-19-based review/survey researches to deliver a brief overview on the maximum amount of information on COVID-19-based existing researches.
Collapse
Affiliation(s)
- Kashfia Sailunaz
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Tansel Özyer
- Department of Computer Engineering, Ankara Medipol University, Ankara, Turkey
| | - Jon Rokne
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB, Canada.
- Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey.
- Department of Health Informatics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Diagnosis of COVID-19 from X-rays using combined CNN-RNN architecture with transfer learning. BENCHCOUNCIL TRANSACTIONS ON BENCHMARKS, STANDARDS AND EVALUATIONS 2023:100088. [PMCID: PMC10010001 DOI: 10.1016/j.tbench.2023.100088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Combating the COVID-19 pandemic has emerged as one of the most promising issues in global healthcare. Accurate and fast diagnosis of COVID-19 cases is required for the right medical treatment to control this pandemic. Chest radiography imaging techniques are more effective than the reverse-transcription polymerase chain reaction (RT-PCR) method in detecting coronavirus. Due to the limited availability of medical images, transfer learning is better suited to classify patterns in medical images. This paper presents a combined architecture of convolutional neural network (CNN) and recurrent neural network (RNN) to diagnose COVID-19 patients from chest X-rays. The deep transfer techniques used in this experiment are VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2, where CNN is used to extract complex features from samples and classify them using RNN. In our experiments, the VGG19-RNN architecture outperformed all other networks in terms of accuracy. Finally, decision-making regions of images were visualized using gradient-weighted class activation mapping (Grad-CAM). The system achieved promising results compared to other existing systems and might be validated in the future when more samples would be available. The experiment demonstrated a good alternative method to diagnose COVID-19 for medical staff. All the data used during the study are openly available from the Mendeley data repository at https://data.mendeley.com/datasets/mxc6vb7svm. For further research, we have made the source code publicly available at https://github.com/Asraf047/COVID19-CNN-RNN.
Collapse
|
7
|
Hasan MM, Islam MU, Sadeq MJ, Fung WK, Uddin J. Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment. SENSORS (BASEL, SWITZERLAND) 2023; 23:527. [PMID: 36617124 PMCID: PMC9824505 DOI: 10.3390/s23010527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Artificial intelligence has significantly enhanced the research paradigm and spectrum with a substantiated promise of continuous applicability in the real world domain. Artificial intelligence, the driving force of the current technological revolution, has been used in many frontiers, including education, security, gaming, finance, robotics, autonomous systems, entertainment, and most importantly the healthcare sector. With the rise of the COVID-19 pandemic, several prediction and detection methods using artificial intelligence have been employed to understand, forecast, handle, and curtail the ensuing threats. In this study, the most recent related publications, methodologies and medical reports were investigated with the purpose of studying artificial intelligence's role in the pandemic. This study presents a comprehensive review of artificial intelligence with specific attention to machine learning, deep learning, image processing, object detection, image segmentation, and few-shot learning studies that were utilized in several tasks related to COVID-19. In particular, genetic analysis, medical image analysis, clinical data analysis, sound analysis, biomedical data classification, socio-demographic data analysis, anomaly detection, health monitoring, personal protective equipment (PPE) observation, social control, and COVID-19 patients' mortality risk approaches were used in this study to forecast the threatening factors of COVID-19. This study demonstrates that artificial-intelligence-based algorithms integrated into Internet of Things wearable devices were quite effective and efficient in COVID-19 detection and forecasting insights which were actionable through wide usage. The results produced by the study prove that artificial intelligence is a promising arena of research that can be applied for disease prognosis, disease forecasting, drug discovery, and to the development of the healthcare sector on a global scale. We prove that artificial intelligence indeed played a significantly important role in helping to fight against COVID-19, and the insightful knowledge provided here could be extremely beneficial for practitioners and research experts in the healthcare domain to implement the artificial-intelligence-based systems in curbing the next pandemic or healthcare disaster.
Collapse
Affiliation(s)
- Md. Mahadi Hasan
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia 1349, Bangladesh
| | - Muhammad Usama Islam
- School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Muhammad Jafar Sadeq
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia 1349, Bangladesh
| | - Wai-Keung Fung
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Jasim Uddin
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| |
Collapse
|
8
|
Annamalai B, Saravanan P, Varadharajan I. ABOA-CNN: auction-based optimization algorithm with convolutional neural network for pulmonary disease prediction. Neural Comput Appl 2023; 35:7463-7474. [PMID: 36788792 PMCID: PMC9910772 DOI: 10.1007/s00521-022-08033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/04/2022] [Indexed: 02/12/2023]
Abstract
Nowadays, deep learning plays a vital role behind many of the emerging technologies. Few applications of deep learning include speech recognition, virtual assistant, healthcare, entertainment, and so on. In healthcare applications, deep learning can be used to predict diseases effectively. It is a type of computer model that learns in conducting classification tasks directly from text, sound, or images. It also provides better accuracy and sometimes outdoes human performance. We presented a novel approach that makes use of the deep learning method in our proposed work. The prediction of pulmonary disease can be performed with the aid of convolutional neural network (CNN) incorporated with auction-based optimization algorithm (ABOA) and DSC process. The traditional CNN ignores the dominant features from the X-ray images while performing the feature extraction process. This can be effectively circumvented by the adoption of ABOA, and the DSC is used to classify the pulmonary disease types such as fibrosis, pneumonia, cardiomegaly, and normal from the X-ray images. We have taken two datasets, namely the NIH Chest X-ray dataset and ChestX-ray8. The performances of the proposed approach are compared with deep learning-based state-of-art works such as BPD, DL, CSS-DL, and Grad-CAM. From the performance analyses, it is confirmed that the proposed approach effectively extracts the features from the X-ray images, and thus, the prediction of pulmonary diseases is more accurate than the state-of-art approaches.
Collapse
Affiliation(s)
- Balaji Annamalai
- School of Computing Science and Engineering (SCSE), VIT Bhopal University, Bhopal, MP India
| | - Prabakeran Saravanan
- Department of Networking and Communications, School of Computing, SRM Institute of Science & Technology (SRMIST), Kattankulathur, Tamil Nadu India
| | - Indumathi Varadharajan
- Department of Computational Intelligence School of Computing, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu India
| |
Collapse
|
9
|
Gopatoti A, P V. Multi-texture features and optimized DeepNet for COVID-19 detection using chest x-ray images. CONCURRENCY AND COMPUTATION : PRACTICE & EXPERIENCE 2022; 34:e7157. [PMID: 36246408 PMCID: PMC9538201 DOI: 10.1002/cpe.7157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 06/16/2023]
Abstract
The corona virus disease 2019 (COVID-19) pandemic has a severe influence on population health all over the world. Various methods are developed for detecting the COVID-19, but the process of diagnosing this problem from radiology and radiography images is one of the effective procedures for diagnosing the affected patients. Therefore, a robust and effective multi-local texture features (MLTF)-based feature extraction approach and Improved Weed Sea-based DeepNet (IWS-based DeepNet) approach is proposed for detecting the COVID-19 at an earlier stage. The developed IWS-based DeepNet is developed for detecting COVID-19to optimize the structure of the Deep Convolutional Neural Network (Deep CNN). The IWS is devised by incorporating the Improved Invasive Weed Optimization (IIWO) and Sea Lion Optimization (SLnO), respectively. The noises present in the input chest x-ray (CXR) image are discarded using Region of Interest (RoI) extraction by adaptive thresholding technique. For feature extraction, the proposed MLFT is newly developed by considering various texture features for extracting the best features. Finally, the COVID-19 detection is performed using the proposed IWS-based DeepNet. Furthermore, the proposed technique achieved effective performance in terms of True Positive Rate (TPR), True Negative Rate (TNR), and accuracy with the maximum values of 0.933%, 0.890%, and 0.919%.
Collapse
Affiliation(s)
- Anandbabu Gopatoti
- Department of Electronics and Communication Engineering Hindusthan College of Engineering and Technology Coimbatore Tamil Nadu India
- Anna University Chennai Tamil Nadu India
| | - Vijayalakshmi P
- Department of Electronics and Communication Engineering Hindusthan College of Engineering and Technology Coimbatore Tamil Nadu India
| |
Collapse
|
10
|
Shiri I, Mostafaei S, Haddadi Avval A, Salimi Y, Sanaat A, Akhavanallaf A, Arabi H, Rahmim A, Zaidi H. High-dimensional multinomial multiclass severity scoring of COVID-19 pneumonia using CT radiomics features and machine learning algorithms. Sci Rep 2022; 12:14817. [PMID: 36050434 PMCID: PMC9437017 DOI: 10.1038/s41598-022-18994-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/23/2022] [Indexed: 12/11/2022] Open
Abstract
We aimed to construct a prediction model based on computed tomography (CT) radiomics features to classify COVID-19 patients into severe-, moderate-, mild-, and non-pneumonic. A total of 1110 patients were studied from a publicly available dataset with 4-class severity scoring performed by a radiologist (based on CT images and clinical features). The entire lungs were segmented and followed by resizing, bin discretization and radiomic features extraction. We utilized two feature selection algorithms, namely bagging random forest (BRF) and multivariate adaptive regression splines (MARS), each coupled to a classifier, namely multinomial logistic regression (MLR), to construct multiclass classification models. The dataset was divided into 50% (555 samples), 20% (223 samples), and 30% (332 samples) for training, validation, and untouched test datasets, respectively. Subsequently, nested cross-validation was performed on train/validation to select the features and tune the models. All predictive power indices were reported based on the testing set. The performance of multi-class models was assessed using precision, recall, F1-score, and accuracy based on the 4 × 4 confusion matrices. In addition, the areas under the receiver operating characteristic curves (AUCs) for multi-class classifications were calculated and compared for both models. Using BRF, 23 radiomic features were selected, 11 from first-order, 9 from GLCM, 1 GLRLM, 1 from GLDM, and 1 from shape. Ten features were selected using the MARS algorithm, namely 3 from first-order, 1 from GLDM, 1 from GLRLM, 1 from GLSZM, 1 from shape, and 3 from GLCM features. The mean absolute deviation, skewness, and variance from first-order and flatness from shape, and cluster prominence from GLCM features and Gray Level Non Uniformity Normalize from GLRLM were selected by both BRF and MARS algorithms. All selected features by BRF or MARS were significantly associated with four-class outcomes as assessed within MLR (All p values < 0.05). BRF + MLR and MARS + MLR resulted in pseudo-R2 prediction performances of 0.305 and 0.253, respectively. Meanwhile, there was a significant difference between the feature selection models when using a likelihood ratio test (p value = 0.046). Based on confusion matrices for BRF + MLR and MARS + MLR algorithms, the precision was 0.856 and 0.728, the recall was 0.852 and 0.722, whereas the accuracy was 0.921 and 0.861, respectively. AUCs (95% CI) for multi-class classification were 0.846 (0.805-0.887) and 0.807 (0.752-0.861) for BRF + MLR and MARS + MLR algorithms, respectively. Our models based on the utilization of radiomic features, coupled with machine learning were able to accurately classify patients according to the severity of pneumonia, thus highlighting the potential of this emerging paradigm in the prognostication and management of COVID-19 patients.
Collapse
Affiliation(s)
- Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Shayan Mostafaei
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Azadeh Akhavanallaf
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva, Switzerland.
- Geneva University Neurocenter, Geneva University, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
11
|
Ksibi A, Zakariah M, Ayadi M, Elmannai H, Shukla PK, Awal H, Hamdi M. Improved Analysis of COVID-19 Influenced Pneumonia from the Chest X-Rays Using Fine-Tuned Residual Networks. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9414567. [PMID: 35720905 PMCID: PMC9201714 DOI: 10.1155/2022/9414567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/20/2022]
Abstract
COVID-19 has remained a threat to world life despite a recent reduction in cases. There is still a possibility that the virus will evolve and become more contagious. If such a situation occurs, the resulting calamity will be worse than in the past if we act irresponsibly. COVID-19 must be widely screened and recognized early to avert a global epidemic. Positive individuals should be quarantined immediately, as this is the only effective way to prevent a global tragedy that has occurred previously. No positive case should go unrecognized. However, current COVID-19 detection procedures require a significant amount of time during human examination based on genetic and imaging techniques. Apart from RT-PCR and antigen-based tests, CXR and CT imaging techniques aid in the rapid and cost-effective identification of COVID. However, discriminating between diseased and normal X-rays is a time-consuming and challenging task requiring an expert's skill. In such a case, the only solution was an automatic diagnosis strategy for identifying COVID-19 instances from chest X-ray images. This article utilized a deep convolutional neural network, ResNet, which has been demonstrated to be the most effective for image classification. The present model is trained using pretrained ResNet on ImageNet weights. The versions of ResNet34, ResNet50, and ResNet101 were implemented and validated against the dataset. With a more extensive network, the accuracy appeared to improve. Nonetheless, our objective was to balance accuracy and training time on a larger dataset. By comparing the prediction outcomes of the three models, we concluded that ResNet34 is a more likely candidate for COVID-19 detection from chest X-rays. The highest accuracy level reached 98.34%, which was higher than the accuracy achieved by other state-of-the-art approaches examined in earlier studies. Subsequent analysis indicated that the incorrect predictions occurred with approximately 100% certainty. This uncovered a severe weakness in CNN, particularly in the medical area, where critical decisions are made. However, this can be addressed further in a future study by developing a modified model to incorporate uncertainty into the predictions, allowing medical personnel to manually review the incorrect predictions.
Collapse
Affiliation(s)
- Amel Ksibi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed Zakariah
- College of Computer and Information Sciences, King Saud University, P.O.Box 51178, Riyadh 11543, Saudi Arabia
| | - Manel Ayadi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Hela Elmannai
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Prashant Kumar Shukla
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Halifa Awal
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Electrical and Electronics Engineering, Tamale Technical University, Tamale, Ghana
| | - Monia Hamdi
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
12
|
Rai R, Das A, Ray S, Dhal KG. Human-Inspired Optimization Algorithms: Theoretical Foundations, Algorithms, Open-Research Issues and Application for Multi-Level Thresholding. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 29:5313-5352. [PMID: 35694187 PMCID: PMC9171491 DOI: 10.1007/s11831-022-09766-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
Humans take immense pride in their ability to be unpredictably intelligent and despite huge advances in science over the past century; our understanding about human brain is still far from complete. In general, human being acquire the high echelon of intelligence with the ability to understand, reason, recognize, learn, innovate, retain information, make decision, communicate and further solve problem. Thereby, integrating the intelligence of human to develop the optimization technique using the human problem-solving ability would definitely take the scenario to next level thus promising an affluent solution to the real world optimization issues. However, human behavior and evolution empowers human to progress or acclimatize with their environments at rates that exceed that of other nature based evolution namely swarm, bio-inspired, plant-based or physics-chemistry based thus commencing yet additional detachment of Nature-Inspired Optimization Algorithm (NIOA) i.e. Human-Inspired Optimization Algorithms (HIOAs). Announcing new meta-heuristic optimization algorithms are at all times a welcome step in the research field provided it intends to address problems effectively and quickly. The family of HIOA is expanding rapidly making it difficult for the researcher to select the appropriate HIOA; moreover, in order to map the problems alongside HIOA, it requires proper understanding of the theoretical fundamental, major rules governing HIOAs as well as common structure of HIOAs. Common challenges and open research issues are yet another important concern in HIOA that needs to be addressed carefully. With this in mind, our work distinguishes HIOAs on the basis of a range of criteria and discusses the building blocks of various algorithms to achieve aforementioned objectives. Further, this paper intends to deliver an acquainted survey and analysis associated with modern compartment of NIOA engineered upon the perception of human behavior and intelligence i.e. Human-Inspired Optimization Algorithms (HIOAs) stressing on its theoretical foundations, applications, open research issues and their implications on color satellite image segmentation to further develop Multi-Level Thresholding (MLT) models utilizing Tsallis and t-entropy as objective functions to judge their efficacy.
Collapse
Affiliation(s)
- Rebika Rai
- Department of Computer Applications, Sikkim University, Gangtok, Sikkim India
| | - Arunita Das
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| | - Swarnajit Ray
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal India
| | - Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| |
Collapse
|
13
|
AlArjani A, Nasseef MT, Kamal SM, Rao BVS, Mahmud M, Uddin MS. Application of Mathematical Modeling in Prediction of COVID-19 Transmission Dynamics. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 47:10163-10186. [PMID: 35018276 PMCID: PMC8739391 DOI: 10.1007/s13369-021-06419-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
The entire world has been affected by the outbreak of COVID-19 since early 2020. Human carriers are largely the spreaders of this new disease, and it spreads much faster compared to previously identified coronaviruses and other flu viruses. Although vaccines have been invented and released, it will still be a challenge to overcome this disease. To save lives, it is important to better understand how the virus is transmitted from one host to another and how future areas of infection can be predicted. Recently, the second wave of infection has hit multiple countries, and governments have implemented necessary measures to tackle the spread of the virus. We investigated the three phases of COVID-19 research through a selected list of mathematical modeling articles. To take the necessary measures, it is important to understand the transmission dynamics of the disease, and mathematical modeling has been considered a proven technique in predicting such dynamics. To this end, this paper summarizes all the available mathematical models that have been used in predicting the transmission of COVID-19. A total of nine mathematical models have been thoroughly reviewed and characterized in this work, so as to understand the intrinsic properties of each model in predicting disease transmission dynamics. The application of these nine models in predicting COVID-19 transmission dynamics is presented with a case study, along with detailed comparisons of these models. Toward the end of the paper, key behavioral properties of each model, relevant challenges and future directions are discussed.
Collapse
Affiliation(s)
- Ali AlArjani
- Department of Mechanical & Industrial Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, AlKharj, 16273 Saudi Arabia
| | - Md Taufiq Nasseef
- Douglas Hospital Research Center, Department of Psychiatry, School of Medicine, McGill University, Montreal, QC Canada
| | - Sanaa M. Kamal
- Department of Internal Medicine, College of medicine, Prince Sattam Bin Abdulaziz University, AlKharj, 11942 Saudi Arabia
| | - B. V. Subba Rao
- Dept of Information Technology, PVP Siddhartha Institute of Technology, Chalasani Nagar, Kanuru, Vijayawada, Andhra Pradesh 520007 India
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Clifton, Nottingham, NG11 8NS UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Clifton, Nottingham, NG11 8NS UK
- Computing and Informatics Research Centre, Nottingham Trent University, Clifton, Nottingham, NG11 8NS UK
| | - Md Sharif Uddin
- Department of Mechanical & Industrial Engineering, Prince Sattam Bin Abdulaziz University, AlKharj, 16273 Saudi Arabia
- Department of Mathematics, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| |
Collapse
|
14
|
Islam MK, Habiba SU, Khan TA, Tasnim F. COV-RadNet: A Deep Convolutional Neural Network for Automatic Detection of COVID-19 from Chest X-Rays and CT Scans. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE UPDATE 2022; 2:100064. [PMID: 36039092 PMCID: PMC9404230 DOI: 10.1016/j.cmpbup.2022.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 05/07/2023]
Abstract
With the increase in severity of COVID-19 pandemic situation, the world is facing a critical fight to cope up with the impacts on human health, education and economy. The ongoing battle with the novel corona virus, is showing much priority to diagnose and provide rapid treatment to the patients. The rapid growth of COVID-19 has broken the healthcare system of the affected countries, creating a shortage in ICUs, test kits, ventilation support system. etc. This paper aims at finding an automatic COVID-19 detection approach which will assist the medical practitioners to diagnose the disease quickly and effectively. In this paper, a deep convolutional neural network, 'COV-RadNet' is proposed to detect COVID positive, viral pneumonia, lung opacity and normal, healthy people by analyzing their Chest Radiographic (X-ray and CT scans) images. Data augmentation technique is applied to balance the dataset 'COVID 19 Radiography Dataset' to make the classifier more robust to the classification task. We have applied transfer learning approach using four deep learning based models: VGG16, VGG19, ResNet152 and ResNext 101 to detect COVID-19 from chest X-ray images. We have achieved 97% classification accuracy using our proposed COV-RadNet model for COVID/Viral Pneumonia/Lungs Opacity/Normal, 99.5% accuracy to detect COVID/Viral Pneumonia/Normal and 99.72% accuracy to detect COVID and non-COVID people. Using chest CT scan images, we have found 99.25% accuracy to classify between COVID and non-COVID classes. Among the performance of the pre-trained models, ResNext 101 has shown the highest accuracy of 98.5% for multiclass classification (COVID, viral pneumonia, Lungs opacity and normal).
Collapse
Affiliation(s)
- Md Khairul Islam
- Khulna University of Engineering & Technology, Khulna, 9203, Khulna, Bangladesh
| | - Sultana Umme Habiba
- Khulna University of Engineering & Technology, Khulna, 9203, Khulna, Bangladesh
| | - Tahsin Ahmed Khan
- Khulna University of Engineering & Technology, Khulna, 9203, Khulna, Bangladesh
| | - Farzana Tasnim
- International Islamic University Chittagong, Kumira, 4318, Chittagong, Bangladesh
| |
Collapse
|
15
|
Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, Dharmik C, Samanth J, Kadri NA, Hasikin K, Barua PD, Chakraborty S, Ciaccio EJ, Acharya UR. Role of Artificial Intelligence in COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:8045. [PMID: 34884045 PMCID: PMC8659534 DOI: 10.3390/s21238045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022]
Abstract
The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Sneha Nayak
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mokshagna Rohit Gangavarapu
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chinmay Dharmik
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia;
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Subrata Chakraborty
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
16
|
Prakash NB, Murugappan M, Hemalakshmi GR, Jayalakshmi M, Mahmud M. Deep transfer learning for COVID-19 detection and infection localization with superpixel based segmentation. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103252. [PMID: 34422549 PMCID: PMC8364837 DOI: 10.1016/j.scs.2021.103252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 05/07/2023]
Abstract
The evolution the novel corona virus disease (COVID-19) as a pandemic has inflicted several thousand deaths per day endangering the lives of millions of people across the globe. In addition to thermal scanning mechanisms, chest imaging examinations provide valuable insights to the detection of this virus, diagnosis and prognosis of the infections. Though Chest CT and Chest X-ray imaging are common in the clinical protocols of COVID-19 management, the latter is highly preferred, attributed to its simple image acquisition procedure and mobility of the imaging mechanism. However, Chest X-ray images are found to be less sensitive compared to Chest CT images in detecting infections in the early stages. In this paper, we propose a deep learning based framework to enhance the diagnostic values of these images for improved clinical outcomes. It is realized as a variant of the conventional SqueezeNet classifier with segmentation capabilities, which is trained with deep features extracted from the Chest X-ray images of a standard dataset for binary and multi class classification. The binary classifier achieves an accuracy of 99.53% in the discrimination of COVID-19 and Non COVID-19 images. Similarly, the multi class classifier performs classification of COVID-19, Viral Pneumonia and Normal cases with an accuracy of 99.79%. This model called the COVID-19 Super pixel SqueezNet (COVID-SSNet) performs super pixel segmentation of the activation maps to extract the regions of interest which carry perceptual image features and constructs an overlay of the Chest X-ray images with these regions. The proposed classifier model adds significant value to the Chest X-rays for an integral examination of the image features and the image regions influencing the classifier decisions to expedite the COVID-19 treatment regimen.
Collapse
Affiliation(s)
- N B Prakash
- Department of Electrical and Electronics Engineering, National Engineering College, Tamil Nadu, India
| | - M Murugappan
- Intelligent Signal Processing (ISP) Research Lab, Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Kuwait
| | - G R Hemalakshmi
- Department of Computer Science and Engineering, National Engineering College, Tamil Nadu, India
| | - M Jayalakshmi
- Department of Computer Science and Engineering, National Engineering College, Tamil Nadu, India
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
- Computing and Informatics Research Centre, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| |
Collapse
|
17
|
Abirami RS, Kumar GS. Comparative Study Based on Analysis of Coronavirus Disease (COVID-19) Detection and Prediction Using Machine Learning Models. SN COMPUTER SCIENCE 2021; 3:79. [PMID: 34841267 PMCID: PMC8605773 DOI: 10.1007/s42979-021-00965-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/07/2021] [Indexed: 11/13/2022]
Abstract
As the number of COVID-19 cases increases day by day, the situation and livelihood of people throughout the world deteriorates. The goal of this study is to use machine learning models to identify disease and forecast whether or not a person is infected with the virus or another common illness. More articles about COVID-19 will be released starting in 2020, but we still do not have a reliable prediction mechanism to diagnose the disease with 100% accuracy. This comparison is done to see which model is the most effective in detecting and predicting disease. Despite the fact that we have immunizations, we require a best-prediction strategy to assist all humans in surviving. Researchers claimed that the supervised learning method predicts more accurately than the unsupervised learning method in the majority of studies. Supervised learning is the process of mapping inputs to derived outputs using a set of variables and created functions. This will also help us to optimize performance criteria using experience. It is further divided into two categories: classification and regression. According to recent studies, classification models are more accurate than other models.
Collapse
Affiliation(s)
- R. Sudha Abirami
- Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry, India
| | - G. Suresh Kumar
- Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry, India
| |
Collapse
|
18
|
Alhudhaif A, Polat K, Karaman O. Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images. EXPERT SYSTEMS WITH APPLICATIONS 2021; 180:115141. [PMID: 33967405 PMCID: PMC8093008 DOI: 10.1016/j.eswa.2021.115141] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 05/09/2023]
Abstract
X-ray units have become one of the most advantageous candidates for triaging the new Coronavirus disease COVID-19 infected patients thanks to its relatively low radiation dose, ease of access, practical, reduced prices, and quick imaging process. This research intended to develop a reliable convolutional-neural-network (CNN) model for the classification of COVID-19 from chest X-ray views. Moreover, it is aimed to prevent bias issues due to the database. Transfer learning-based CNN model was developed by using a sum of 1,218 chest X-ray images (CXIs) consisting of 368 COVID-19 pneumonia and 850 other pneumonia cases by pre-trained architectures, including DenseNet-201, ResNet-18, and SqueezeNet. The chest X-ray images were acquired from publicly available databases, and each individual image was carefully selected to prevent any bias problem. A stratified 5-fold cross-validation approach was utilized with a ratio of 90% for training and 10% for the testing (unseen folds), in which 20% of training data was used as a validation set to prevent overfitting problems. The binary classification performances of the proposed CNN models were evaluated by the testing data. The activation mapping approach was implemented to improve the causality and visuality of the radiograph. The outcomes demonstrated that the proposed CNN model built on DenseNet-201 architecture outperformed amongst the others with the highest accuracy, precision, recall, and F1-scores of 94.96%, 89.74%, 94.59%, and 92.11%, respectively. The results indicated that the reliable diagnosis of COVID-19 pneumonia from CXIs based on the CNN model opens the door to accelerate triage, save critical time, and prioritize resources besides assisting the radiologists.
Collapse
Affiliation(s)
- Adi Alhudhaif
- Department of Computer Science, College of Computer Engineering and Sciences in Al-kharj, Prince Sattam Bin Abdulaziz University, P.O. Box 151, Al-Kharj 11942, Saudi Arabia
| | - Kemal Polat
- Department of Electrical and Electronics Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Onur Karaman
- Akdeniz University, Vocational School of Health Services, Department of Medical Imaging Techniques, Antalya 07070, Turkey
| |
Collapse
|
19
|
Mahmood AF, Mahmood SW. Auto informing COVID-19 detection result from x-ray/CT images based on deep learning. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:084102. [PMID: 34470404 DOI: 10.1063/5.0059829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
It is no secret to all that the corona pandemic has caused a decline in all aspects of the world. Therefore, offering an accurate automatic diagnostic system is very important. This paper proposed an accurate COVID-19 system by testing various deep learning models for x-ray/computed tomography (CT) medical images. A deep preprocessing procedure was done with two filters and segmentation to increase classification results. According to the results obtained, 99.94% of accuracy, 98.70% of sensitivity, and 100% of specificity scores were obtained by the Xception model in the x-ray dataset and the InceptionV3 model for CT scan images. The compared results have demonstrated that the proposed model is proven to be more successful than the deep learning algorithms in previous studies. Moreover, it has the ability to automatically notify the examination results to the patients, the health authority, and the community after taking any x-ray or CT images.
Collapse
Affiliation(s)
| | - Saja Waleed Mahmood
- University of Mosul, College of Engineering, Computer Engineering, Mosul, Iraq
| |
Collapse
|