1
|
Han L, Yan J, Li T, Lin W, Huang Y, Shen P, Ba X, Huang Y, Qin K, Geng Y, Wang H, Zheng K, Liu Y, Wang Y, Chen Z, Tu S. Multifaceted oncostatin M: novel roles and therapeutic potential of the oncostatin M signaling in rheumatoid arthritis. Front Immunol 2023; 14:1258765. [PMID: 38022540 PMCID: PMC10654622 DOI: 10.3389/fimmu.2023.1258765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a self-immune inflammatory disease characterized by joint damage. A series of cytokines are involved in the development of RA. Oncostatin M (OSM) is a pleiotropic cytokine that primarily activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and other physiological processes such as cell proliferation, inflammatory response, immune response, and hematopoiesis through its receptor complex. In this review, we first describe the characteristics of OSM and its receptor, and the biological functions of OSM signaling. Subsequently, we discuss the possible roles of OSM in the development of RA from clinical and basic research perspectives. Finally, we summarize the progress of clinical studies targeting OSM for the treatment of RA. This review provides researchers with a systematic understanding of the role of OSM signaling in RA, which can guide the development of drugs targeting OSM for the treatment of RA.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinhong Geng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaifeng Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Albiero M, Ciciliot S, Rodella A, Migliozzi L, Amendolagine FI, Boscaro C, Zuccolotto G, Rosato A, Fadini GP. Loss of Hematopoietic Cell-Derived Oncostatin M Worsens Diet-Induced Dysmetabolism in Mice. Diabetes 2023; 72:483-495. [PMID: 36657995 DOI: 10.2337/db22-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
Innate immune cells infiltrate growing adipose tissue and propagate inflammatory clues to metabolically distant tissues, thereby promoting glucose intolerance and insulin resistance. Cytokines of the IL-6 family and gp130 ligands are among such signals. The role played by oncostatin M (OSM) in the metabolic consequences of overfeeding is debated, at least in part, because prior studies did not distinguish OSM sources and dynamics. Here, we explored the role of OSM in metabolic responses and used bone marrow transplantation to test the hypothesis that hematopoietic cells are major contributors to the metabolic effects of OSM. We show that OSM is required to adapt during the development of obesity because OSM concentrations are dynamically modulated during high-fat diet (HFD) and Osm-/- mice displayed early-onset glucose intolerance, impaired muscle glucose uptake, and worsened liver inflammation and damage. We found that OSM is mostly produced by blood cells and deletion of OSM in hematopoietic cells phenocopied glucose intolerance of whole-body Osm-/- mice fed a HFD and recapitulated liver damage with increased aminotransferase levels. We thus uncovered that modulation of OSM is involved in the metabolic response to overfeeding and that hematopoietic cell-derived OSM can regulate metabolism, likely via multiple effects in different tissues.
Collapse
Affiliation(s)
- Mattia Albiero
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Stefano Ciciliot
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Anna Rodella
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Ludovica Migliozzi
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Francesco Ivan Amendolagine
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carlotta Boscaro
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Antonio Rosato
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
3
|
Abstract
Oncostatin M (OSM) is a member of the glycoprotein 130 cytokine family that is involved in chronic inflammation and increased in adipose tissue under obesity and insulin resistance. OSM was shown to inhibit adipogenesis, suppress browning, and contribute to insulin resistance in cultured white adipocytes. In contrast, OSM may have a metabolically favourable role on adipocytes in mouse models of obesity and insulin resistance. However, a putative role of OSM in modulating lipolysis has not been investigated in detail to date. To address this, cultured white adipocytes of mouse or human origin were exposed to 10 or 100 ng/ml of OSM for various time periods. In murine 3T3-L1 cells, OSM stimulation directly activated hormone-sensitive lipase (HSL) and other players of the lipolytic machinery, and dose-dependently increased free fatty acid and glycerol release. In parallel, OSM attenuated insulin-mediated suppression of lipolysis and induced phosphorylation of serine-residues on the insulin receptor substrate-1 (IRS1) protein. Key experiments were verified in a second murine and a human adipocyte cell line. Inhibiton of extracellular signal-regulated kinase (ERK)-1/2 activation, abolished OSM-mediated HSL phosphorylation and lipolysis. In conclusion, OSM signalling directly promotes lipolysis in white adipocytes in an ERK1/2-dependent manner.
Collapse
Affiliation(s)
- Pim P. van Krieken
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, University of Zurich, Zurich, Switzerland
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, University of Zurich, Zurich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Lähteenmäki Taalas T, Järvelä L, Niinikoski H, Huurre A, Harila‐Saari A. Inflammatory biomarkers after an exercise intervention in childhood acute lymphoblastic leukemia survivors. EJHAEM 2022; 3:1188-1200. [PMID: 36467791 PMCID: PMC9713025 DOI: 10.1002/jha2.588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/17/2023]
Abstract
Cancer survivors show increased risk for non-communicable diseases and chronic low-grade inflammation characterizes the development of such diseases. We investigated inflammatory plasma protein profiles of survivors of childhood acute lymphoblastic leukemia (ALL) in comparison to healthy controls and after an intervention with a home-based exercise program. Survivors of childhood ALL aged 16-30 years (n = 21) with a median age at diagnosis 4.9 (1.6-12.9) years and a median time of 15.9 years from diagnosis, and sex- and age-matched healthy controls (n = 21) were studied. Stored plasma samples were analyzed with Olink's 92-protein-wide Inflammation panel in 21 ALL long-term survivors at baseline, after a previous 16-week home-based exercise intervention (n = 17) and in 21 age- and sex-matched controls at baseline. Protein expression levels were compared between the groups. Inflammatory protein levels did not differ between the survivors and controls at baseline. Significantly reduced levels after the intervention were found in 11 proteins related to either vascular inflammation, insulin resistance, or both: tumor necrosis factor superfamily member 14 (TNFSF14), oncostatin M (OSM), monocyte chemoattractant protein 1 (MCP-1), MCP-2, fibroblast growth factor 21 (FGF-21), chemokine (C-C motif) ligand 4 (CCL4), transforming growth factor alpha (TGF-α), tumor necrosis factor-related apoptosis-inducing ligand 10 (TRAIL), adenosine deaminase (ADA), chemokine (C-X-C motif) ligand 6 (CXCL6), and latency-associated peptide transforming growth factor beta 1 (LAP TGF-β1). The ALL survivors were not significantly more affected by inflammation than controls at baseline. The survivors' 16-week exercise intervention led to significant reduction in inflammatory protein levels. Physical exercise should be promoted for survivors of childhood cancer.
Collapse
Affiliation(s)
- Tuomas Lähteenmäki Taalas
- University of TurkuTurkuFinland
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| | - Liisa Järvelä
- University of TurkuTurkuFinland
- Department of Pediatrics and Adolescent MedicineTurku University HospitalTurkuFinland
| | - Harri Niinikoski
- University of TurkuTurkuFinland
- Department of Pediatrics and Adolescent MedicineTurku University HospitalTurkuFinland
| | - Anu Huurre
- University of TurkuTurkuFinland
- Department of Pediatrics and Adolescent MedicineTurku University HospitalTurkuFinland
| | - Arja Harila‐Saari
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| |
Collapse
|
5
|
Adipokines and Inflammation: Focus on Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21207711. [PMID: 33081064 PMCID: PMC7589803 DOI: 10.3390/ijms21207711] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
It is well established that adipose tissue, apart from its energy storage function, acts as an endocrine organ that produces and secretes a number of bioactive substances, including hormones commonly known as adipokines. Obesity is a major risk factor for the development of cardiovascular diseases, mainly due to a low grade of inflammation and the excessive fat accumulation produced in this state. The adipose tissue dysfunction in obesity leads to an aberrant release of adipokines, some of them with direct cardiovascular and inflammatory regulatory functions. Inflammation is a common link between obesity and cardiovascular diseases, so this review will summarise the role of the main adipokines implicated in the regulation of the inflammatory processes occurring under the scenario of cardiovascular diseases.
Collapse
|
6
|
Akarsu M, Hurşitoğlu M, Toprak Z, Yoldemir ŞA, Altun Ö, Toprak ID, Özcan M, Yürüyen G, Uğurlukişi B, Erdem MG, Kirna K, Demir P, Çapar G, Arman Y, Tükek T. Relationships among oncostatin M, insulin resistance, and chronic inflammation: a pilot study. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:38-44. [PMID: 31576964 PMCID: PMC10522293 DOI: 10.20945/2359-3997000000176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2019] [Indexed: 11/23/2022]
Abstract
Objective Activated macrophages (M1-type macrophages) in adipose tissue secrete many proinflammatory cytokines that induce insulin resistance (IR). Oncostatin M (OSM), a member of the interleukin-6 (IL-6) family of Gp130 cytokines, plays an important role in a variety of biological functions, including the regulation of inflammatory responses. Proinflammatory cytokines released in patients with IR trigger a chronic, low-grade inflammatory reaction in blood vessel walls. This inflammator response leads to endothelial damage, which is the main mechanism for atherosclerosis and many cardiovascular diseases. Animal studies have reported a relationship between OSM and IR. To the best of our knowledge, however, few clinical studies have examined this topic. Therefore, we studied the relationship between serum levels of OSM and IR. Subjects and methods This prospective cross-sectional case-control study enrolled 50 people with IR (according to the HOMA-IR and QUICKI indices) and 34 healthy controls. The fasting blood concentrations of insulin, glucose, blood urea nitrogen (BUN), creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride, total cholesterol, C-reactive protein (CRP), and OSM were determined. Results There were no significant differences between the two groups in age, sex, and HbA1c levels. Univariate analyses showed that waist circumference (WC) and levels of fasting glucose, insulin, CRP, HDL-C, OSM, HOMA-IR, and QUICKI differed between the two study groups. In multivariate analyses, both IR indices (QUICKI and HOMA) and OSM differed between the two groups. Conclusion OSM was correlated with the IR indices (QUICKI and HOMA). For simplicity, it might replace the other IR indices in the future. Further detailed studies are needed to confirm this.
Collapse
Affiliation(s)
- Murat Akarsu
- Okmeydani Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyOkmeydani Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Mehmet Hurşitoğlu
- Dr. Sadi Konuk Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyDr. Sadi Konuk Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Zeki Toprak
- Dr. Sadi Konuk Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyDr. Sadi Konuk Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Şengül Aydin Yoldemir
- Okmeydani Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyOkmeydani Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Özgür Altun
- Okmeydani Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyOkmeydani Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Ilkim Deniz Toprak
- Gaziosmanpaşa Taksim Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyGaziosmanpaşa Taksim Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Mustafa Özcan
- Okmeydani Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyOkmeydani Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Gülden Yürüyen
- Fatih Sultan Mehmet Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyFatih Sultan Mehmet Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Bilal Uğurlukişi
- Şişli Etfal Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyŞişli Etfal Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Mahmut Genco Erdem
- Istinye ÜniversityMedical Park HospitalDepartment of Internal MedicineIstanbulTurkeyIstinye Üniversity, Medical Park Hospital Department of Internal Medicine, Istanbul
| | - Kerem Kirna
- Haseki Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyHaseki Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Pinar Demir
- Okmeydani Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyOkmeydani Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Gazi Çapar
- Istanbul UniversityMedical FacultyDepartment of Internal MedicineIstanbulTurkeyIstanbul University, Medical Faculty, Department of Internal Medicine, Istanbul, Turkey
| | - Yücel Arman
- Okmeydani Training and Research HospitalDepartment of Internal MedicineIstanbulTurkeyOkmeydani Training and Research Hospital, Department of Internal Medicine, Istanbul, Turkey
| | - Tufan Tükek
- Istanbul UniversityMedical FacultyDepartment of Internal MedicineIstanbulTurkeyIstanbul University, Medical Faculty, Department of Internal Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Ma MM, Jin CC, Huang XL, Sun L, Zhou H, Wen XJ, Huang XQ, Du JY, Sun HS, Ren ZX, Liu J, Guan YY, Zhao XM, Wang GL. Clcn3 deficiency ameliorates high-fat diet-induced obesity and adipose tissue macrophage inflammation in mice. Acta Pharmacol Sin 2019; 40:1532-1543. [PMID: 31165783 PMCID: PMC7470880 DOI: 10.1038/s41401-019-0229-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Obesity induces accumulation of adipose tissue macrophages (ATMs) and ATM-driven inflammatory responses that promote the development of glucose and lipid metabolism disorders. ClC-3 chloride channel/antiporter, encoded by the Clcn3, is critical for some basic cellular functions. Our previous work has shown significant alleviation of type 2 diabetes in Clcn3 knockout (Clcn3−/−) mice. In the present study we investigated the role of Clcn3 in high-fat diet (HFD)-induced obesity and ATM inflammation. To establish the mouse obesity model, both Clcn3−/− mice and wild-type mice were fed a HFD for 4 or 16 weeks. The metabolic parameters were assessed and the abdominal total adipose tissue was scanned using computed tomography. Their epididymal fat pad tissue and adipose tissue stromal vascular fraction (SVF) cells were isolated for analyses. We found that the HFD-fed Clcn3−/− mice displayed a significant decrease in obesity-induced body weight gain and abdominal visceral fat accumulation as well as an improvement of glucose and lipid metabolism as compared with HFD-fed wild-type mice. Furthermore, the Clcn3 deficiency significantly attenuated HFD-induced ATM accumulation, HFD-increased F4/80+ CD11c+ CD206− SVF cells as well as HFD-activated TLR-4/NF-κB signaling in epididymal fat tissue. In cultured human THP-1 macrophages, adenovirus-mediated transfer of Clcn3 specific shRNA inhibited, whereas adenovirus-mediated cDNA overexpression of Clcn3 enhanced lipopolysaccharide-induced activation of NF-κB and TLR-4. These results demonstrate a novel role for Clcn3 in HFD-induced obesity and ATM inflammation.
Collapse
|
8
|
Comparative Analysis of MicroRNA and mRNA Profiles of Sperm with Different Freeze Tolerance Capacities in Boar ( Sus scrofa) and Giant Panda ( Ailuropoda melanoleuca). Biomolecules 2019; 9:biom9090432. [PMID: 31480517 PMCID: PMC6769438 DOI: 10.3390/biom9090432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022] Open
Abstract
Post-thawed sperm quality parameters vary across different species after cryopreservation. To date, the molecular mechanism of sperm cryoinjury, freeze-tolerance and other influential factors are largely unknown. In this study, significantly dysregulated microRNAs (miRNAs) and mRNAs in boar and giant panda sperm with different cryo-resistance capacity were evaluated. From the result of miRNA profile of fresh and frozen-thawed giant panda sperm, a total of 899 mature, novel miRNAs were identified, and 284 miRNAs were found to be significantly dysregulated (195 up-regulated and 89 down-regulated). Combined analysis of miRNA profiling of giant panda sperm and our previously published data on boar sperm, 46, 21 and 4 differentially expressed (DE) mRNAs in boar sperm were believed to be related to apoptosis, glycolysis and oxidative phosphorylation, respectively. Meanwhile, 87, 17 and 7 DE mRNAs in giant panda were associated with apoptosis, glycolysis and oxidative phosphorylation, respectively. Gene ontology (GO) analysis of the targets of DE miRNAs showed that they were mainly distributed on membrane related pathway in giant panda sperm, while cell components and cell processes were tied to the targets of DE miRNAs in boar sperm. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DE mRNAs indicated that most of these DE mRNAs were distributed in membrane signal transduction-related pathways in giant panda sperm, while those in boar sperm were mainly distributed in the cytokine-cytokine receptor interaction pathway and inflammatory related pathways. In conclusion, although the different freezing extenders and programs were used, the DE miRNAs and mRNAs involved in apoptosis, energy metabolism, olfactory transduction pathway, inflammatory response and cytokine-cytokine interactions, could be the possible molecular mechanism of sperm cryoinjury and freeze tolerance.
Collapse
|
9
|
Oncostatin M, a muscle-secreted myokine, recovers high-glucose-induced impairment of Akt phosphorylation by Fos induction in hippocampal neuron cells. Neuroreport 2019; 30:765-770. [DOI: 10.1097/wnr.0000000000001271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Abstract
Oncostain M, a member of the IL-6 family of cytokines, is produced by immune cells in response to infections and tissue injury. OSM has a broad, often context-dependent effect on various cellular processes including differentiation, hematopoiesis, cell proliferation, and cell survival. OSM signaling is initiated by binding to type I (LIFRβ/gp130) or type II (OSMRβ/gp130) receptor complexes and involves activation of Janus kinase/signal transducer and activator of transcription, mitogen-activated protein kinase, and phosphatidylinositol-3-kinase. High levels of OSM have been detected in many chronic inflammatory conditions characterized by fibrosis, giving a rationale to target OSM for the treatment of these diseases. Here we discuss the current knowledge on the role of OSM in various stages of the fibrotic process including inflammation, vascular dysfunction, and activation of fibroblasts.
Collapse
Affiliation(s)
| | - Maria Trojanowska
- Corresponding Author: Maria Trojanowska, Boston University School of Medicine, 72 East Concord St, E-5, Boston, MA 02118, Tel.: 617-638-4318; Fax: 617-638-5226
| |
Collapse
|
11
|
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018; 18:773-789. [DOI: 10.1038/s41577-018-0066-7] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|