1
|
Soliz MC, Abdala V. Musculoskeletal and tendinous details of selected anomalies in the locomotor system of anurans. Anat Rec (Hoboken) 2024; 307:3282-3305. [PMID: 38529857 DOI: 10.1002/ar.25430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Previous studies on anuran anomalies predominantly examine isolated cases or focus on external and skeletal features. Our study analyzes a comprehensive sample collected from 1991 to 2017, examining the muscle-tendon system in 24 anuran species across adult, juvenile, and metamorphic stages. This extensive sample size allows us to investigate consistent anomaly patterns across different developmental stages and anuran families, exploring potential common developmental or genetic factors. Our detailed anatomical examination, encompassing musculature, tendons, and skeletal structures, revealed that 21% of the specimens displayed anomalies, a noteworthy finding considering the extensive sample size and duration of the studied sample. Of these anomalies, 17% affected the locomotor system, predominantly in the upper limbs. Key anomalies included, forelimbs and hindlimbs brachydactyly, rotation in forelimbs, partial kyphotic lordosis, and scoliosis. Notably, the digit 4 in the forelimbs and digits 4 and 5 in the hindlimbs were particularly susceptible to teratogenic effects, indicating possible prolonged exposure during development. Our study also uncovered combinations of anomalies and identified a phenotype similar to Poland syndrome. The findings validate the "Logic of Monsters" (LoMo theory) by Alberch, although the name itself may not be deemed appropriate, showing that developmental disruptions in tetrapods are not random but follow distinct sequences and patterns. The name, while unfortunate, accurately reflects the unusual nature of these developmental anomalies. This contributes to the evolving "Evo-Devo-Path" framework, highlighting the study's importance in understanding developmental disruptions in tetrapods.
Collapse
Affiliation(s)
- Mónica C Soliz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical, Facultad de Ciencias Naturales, Universidad Nacional de Tucumán-Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología General, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
2
|
Okazaki K, Hamasaki S, Koyama Y, Mukuda T, Nakane H, Taniguchi R, Furuichi R, Kameie T, Kaidoh T. An unusual configuration of two anomalies in the extensor digitorum profundus complex in a human. Anat Sci Int 2024; 99:326-330. [PMID: 38733476 DOI: 10.1007/s12565-024-00776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024]
Abstract
The extensor digitorum profundus complex underwent degeneration of the ulnar segments during primate adaptation and evolution. This process resulted in the preservation of only the extensor pollicis longus and extensor indicis in some apes, including humans. Consequently, anatomical variations within the digitorum profundus complex in modern humans have been well-documented, with detailed reports on their frequency and patterns in previous studies. Here, we report an unusual arrangement involving two anomalies in the extensor digitorum profundus complex, identified in a 66-year-old Japanese male cadaver. In this cadaver, two accessory muscles differentiated from both the extensor pollicis longus and extensor indicis. Notably, the latter muscle featured a tendon bifurcating towards both the thumb and index fingers, referred to as the extensor pollicis et indicis communis. Under the extensor retinaculum, the tendon of the accessory extensor pollicis longus passed through an independent compartment, whereas that of the extensor pollicis et indicis communis traversed a compartment shared by the extensor indicis and the extensor digitorum communis. Both muscles were innervated by the posterior interosseous nerve. Previous studies have reported that the accessory slip of the extensor pollicis longus and extensor pollicis et indicis communis appear at frequencies of 0.6% and 0.4-1.4%, respectively. However, to the best of our knowledge, a configuration in which both appear simultaneously has not been reported. The data from this case could provide essential insights into the variations in the extensor digitorum profundus complex in humans and non-human primates.
Collapse
Affiliation(s)
- Kenji Okazaki
- Department of Anatomy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan.
| | - Sawako Hamasaki
- Department of Anatomy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Yuka Koyama
- Department of Anatomy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Takao Mukuda
- Department of Anatomy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Hironobu Nakane
- Department of Anatomy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
- Department of Anatomy, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Ryota Taniguchi
- Department of Anatomy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| | - Ryota Furuichi
- Technical Department, Tottori University, Tottori, Japan
| | - Toshio Kameie
- Technical Department, Tottori University, Tottori, Japan
| | - Toshiyuki Kaidoh
- Department of Anatomy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan
| |
Collapse
|
3
|
Kitamura A, Yamamoto M, Hirouchi H, Watanabe G, Taniguchi S, Sekiya S, Ishizuka S, Jeong J, Higa K, Yamashita S, Abe S. Downregulation of SOX9 expression in developing entheses adjacent to intramembranous bone. PLoS One 2024; 19:e0301080. [PMID: 38728328 PMCID: PMC11086909 DOI: 10.1371/journal.pone.0301080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Entheses are classified into three types: fibrocartilaginous, fibrous, and periosteal insertions. However, the mechanism behind the development of fibrous entheses and periosteal insertions remains unclear. Since both entheses are part of the temporomandibular joint (TMJ), this study analyzes the TMJ entheses. Here, we show that SOX9 expression is negatively regulated during TMJ enthesis development, unlike fibrocartilage entheses which are modularly formed by SCX and SOX9 positive progenitors. The TMJ entheses was adjacent to the intramembranous bone rather than cartilage. SOX9 expression was diminished during TMJ enthesis development. To clarify the functional role of Sox9 in the development of TMJ entheses, we examined these structures in TMJ using Wnt1Cre;Sox9flox/+ reporter mice. Wnt1Cre;Sox9flox/+ mice showed enthesial deformation at the TMJ. Next, we also observed a diminished SOX9 expression area at the enthesis in contact with the clavicle's membranous bone portion, similar to the TMJ entheses. Together, these findings reveal that the timing of SOX9 expression varies with the ossification development mode.
Collapse
Affiliation(s)
- Asahi Kitamura
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Masahito Yamamoto
- Division of Basic Medical Science, Department of Anatomy, Tokai University School of Medicine, Kanagawa, Japan
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Genji Watanabe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | | | - Sayo Sekiya
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Satoshi Ishizuka
- Department of Pharmacology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States of America
| | - Kazunari Higa
- Ophthalmology/Cornea Center, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Shuichiro Yamashita
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
4
|
Amemiya H, Yamamoto M, Higa K, Watanabe G, Taniguchi S, Kitamura K, Jeong J, Yanagisawa N, Fukuda KI, Abe S. Effects of Myostatin on Nuclear Morphology at the Myotendinous Junction. Int J Mol Sci 2023; 24:ijms24076634. [PMID: 37047606 PMCID: PMC10094852 DOI: 10.3390/ijms24076634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Myostatin (Myo) is known to suppress skeletal muscle growth, and was recently reported to control tendon homeostasis. The purpose of the present study was to investigate the regulatory involvement of Myo in the myotendinous junction (MTJ) in vivo and in vitro. After Achilles tendon injury in mice, we identified unexpected cell accumulation on the tendon side of the MTJ. At postoperative day 7 (POD7), the nuclei had an egg-like profile, whereas at POD28 they were spindle-shaped. The aspect ratio of nuclei on the tendon side of the MTJ differed significantly between POD7 and POD28 (p = 4.67 × 10−34). We then investigated Myo expression in the injured Achilles tendon. At the MTJ, Myo expression was significantly increased at POD28 relative to POD7 (p = 0.0309). To investigate the action of Myo in vitro, we then prepared laminated sheets of myoblasts (C2C12) and fibroblasts (NIH3T3) (a pseudo MTJ model). Myo did not affect the expression of Pax7 and desmin (markers of muscle development), scleraxis and temonodulin (markers of tendon development), or Sox9 (a common marker of muscle and tendon development) in the cell sheets. However, Myo changed the nuclear morphology of scleraxis-positive cells arrayed at the boundary between the myoblast sheet and the fibroblast sheet (aspect ratio of the cell nuclei, myostatin(+) vs. myostatin(-): p = 0.000134). Myo may strengthen the connection at the MTJ in the initial stages of growth and wound healing.
Collapse
Affiliation(s)
- Hikari Amemiya
- Division of Special Needs Dentistry and Orofacial Pain, Department of Oral Health and Clinical Science, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazunari Higa
- Ophthalmology/Cornea Center, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan
| | - Genji Watanabe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Shuichiro Taniguchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E. 24th Street, New York, NY 10010, USA
| | - Nobuaki Yanagisawa
- Division of Oral Health Sciences, Department of Health Sciences, School of Health and Social Services, Saitama Prefectural University, 820 Sannomia, Koshigaya-shi, Saitama 343-0036, Japan
| | - Ken-ichi Fukuda
- Division of Special Needs Dentistry and Orofacial Pain, Department of Oral Health and Clinical Science, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
5
|
Kitamura K, Watanabe T, Yamamoto M, Ishikawa N, Kasahara N, Abe S, Yamamoto H. A Newly Discovered Tendon Between the Genioglossus Muscle and Epiglottic Cartilage Identified by Histological Observation of the Pre-Epiglottic Space. Dysphagia 2023; 38:315-329. [PMID: 35678869 PMCID: PMC9873719 DOI: 10.1007/s00455-022-10469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/16/2022] [Indexed: 01/28/2023]
Abstract
Epiglottic retroversion is difficult to explain anatomically. One reason is inadequate structural identification of the ligaments in the submucosal tissue anterior to the epiglottis (pre-epiglottic space, PES). Although studies have shown that tongue root movement plays a role in epiglottic retroversion, few morphological reports have investigated the attachment of the lingual muscles to the epiglottis. This study reconstructed the fiber structure of the PES by comprehensively analyzing fiber alignment in the PES focusing on the hyoepiglottic ligament, which runs between the lingual muscles and the epiglottis. Gross and microscopic observations of the submucosal structures from the tongue to the larynx of 20 cadavers (10 men, 10 women; mean age 79 years) were performed. A tendon continuing from the posterior part of the genioglossus muscle and attaching to the center of the epiglottic cartilage was identified in the midline area of the epiglottis. We named this tendon the glossoepiglottic tendon. In contrast, the hyoepiglottic ligament is found between the hyoid bone and the epiglottis and is attached from the lateral margin of the epiglottic cartilage to its base. Furthermore, the glossoepiglottic tendon consists of a high-density fiber bundle that is thicker than the hyoepiglottic ligament. These results show that the conventional hyoepiglottic ligament has a two-layer structure consisting of an upper fiber bundle connected to the genioglossus muscle and a lower fiber bundle connected to the hyoid bone. Sustained contraction of the posterior part of the genioglossus muscle therefore places the epiglottis under persistent traction, suggesting that its relaxation may cause epiglottic retroversion.
Collapse
Affiliation(s)
- Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Tae Watanabe
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Noboru Ishikawa
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Norio Kasahara
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| |
Collapse
|
6
|
Kanehira C, Yamamoto M, Hirouchi H, Ishizuka S, Sakiyama K, Higa K, Murakami G, Abe S. Tendinous annulus of Zinn for a common origin of the extraocular rectus muscles: a histological study of the orbital apex from donated elderly cadavers. Anat Sci Int 2022; 97:369-379. [PMID: 35157253 DOI: 10.1007/s12565-022-00649-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
The medial, inferior, lateral, and superior rectus muscles (MR, IR, LR, SR), levator palpebrae superioris (LPS), and superior oblique muscle (SO) seem to originate from the tendinous annulus of Zinn, ring-like fibrous tissue crossing the bony orbital fissure. We observed the histological annulus structure using semi-serial histological sections of the orbital apex from 30 elderly donated cadavers. Nearly frontal sections demonstrated a ring-like fibrous structure (a candidate annulus) connecting or embedding four rectus muscles. The candidate annulus did not contain the LPS and SO, and, in the anterior side, the latter muscles originated from the optic canal opening. Far posterior to the annulus, there was a common tendon of the MR, IR, and LR attached to the infero-medial wall of the bony orbital fissure. At the superior part, the annulus is tightly attached to the optic nerve sheath and the periosteum. Sagittal (or Horizontal) sections clearly exhibited parts of the annulus at the MR (SR) origin. Both sagittal and horizontal sections displayed (1) the common origin of the three rectus muscles near the oculomotor nerve in the bony fissure and (2) an accessory, independent muscle bundle of the MR originating from the superomedial margin of the optic canal near the origins of the LPS or SO. Consequently, the so-called tendinous annulus appeared not to provide origins of all six muscles.
Collapse
Affiliation(s)
| | | | | | | | - Koji Sakiyama
- Division of Anatomy, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyaki-dai, Sakado-shi, Saitama, 350-0283, Japan
| | - Kazunari Higa
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Sugano, Ichikawa, Chiba, 5-11-13, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.,Division of Internal Medicine, Cupid Clinic, Iwamizawa, Hokkaido, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
7
|
Marqueti RDC, Kjaer M, Moriscot AS. Editorial: Trends in Muscle and Tendon Molecular and Cell Biology. Front Physiol 2022; 12:832613. [PMID: 35185607 PMCID: PMC8851330 DOI: 10.3389/fphys.2021.832613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rita de Cássia Marqueti
- Graduate Program in Rehabilitation Sciences and Graduate Program of Sciences and Technology of Health, Faculty of Ceilândia, University of Brasília, Brasília, Brazil
- *Correspondence: Rita de Cássia Marqueti ;
| | - Michael Kjaer
- Department of Orthopedic Surgery, Institute of Sports Medicine, Copenhagen University Hospital - Bispebjerg Frederiksberg, and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anselmo Sigari Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Yamamoto M, Jin Z, Hayashi S, Rodríguez‐Vázquez JF, Murakami G, Abe S. Association between the developing sphenoid and adult morphology: A study using sagittal sections of the skull base from human embryos and fetuses. J Anat 2021; 239:1300-1317. [PMID: 34268732 PMCID: PMC8602018 DOI: 10.1111/joa.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/27/2022] Open
Abstract
The developing sphenoid is regarded as a median cartilage mass (basisphenoid [BS]) with three cartilaginous processes (orbitosphenoid [OS], ala temporalis [AT], and alar process [AP]). The relationships of this initial configuration with the adult morphology are difficult to determine because of extensive membranous ossification along the cartilaginous elements. The purpose of this study was therefore to evaluate the anatomical connections between each element of the fetal sphenoid and adult morphology. Sagittal sections from 25 embryos and fetuses of gestational age 6-34 weeks and crown-rump length 12-295 mm were therefore examined and compared with horizontal and frontal sections from the other 25 late-term fetuses (217-340 mm). The OS was identified as a set of three mutually attached cartilage bars in early fetuses. At all stages, the OS-post was continuous with the anterolateral part of the BS. The BS included the notochord and Rathke's pouch remnant in embryos and early fetuses. The dorsum sellae was absent from embryos, but it protruded from the BS in early fetuses before a fossa for the hypophysis became evident. Although not higher than the hypophysis at midterm, the dorsum sellae elongated superiorly after gestational age 25 weeks. In early fetuses, the AP was located on the side immediately anterior to the otic capsule. The AT developed on the side immediately posterior to the extraocular rectus muscles. At late term, the greater wing was formed by membranous bones from the AT and AP. The AT and AP formed a complex bridge between the BS and the greater wing. A small cartilage, future medial pterygoid process (PTmed) was located inferior to the AT in early fetuses. At midterm, one endochondral bone and multiple membranous bones formed the PTmed. The lateral pterygoid process (PTlat) was formed by a single membranous bone plate. Therefore, we connected fetal elements and the adult morphology as follows. (1) Derivative of the OS makes not only the lesser wing but also the anterior margin of the body of the sphenoid. (2) Derivatives of the BS are the body of the sphenoid including the sella turcica and the dorsum sellae. (3) Most of the greater wing including the foramen rotundum and the foramen oval originate from the AT and AP and multiple membranous bones. (4) The PTmed originate from endochondral bones and multiple membranous bones, while the PTlat derive from a single membranous bone.
Collapse
Affiliation(s)
| | - Zhe‐Wu Jin
- Department of AnatomyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Shogo Hayashi
- Department of AnatomySchool of MedicineInternational University of Health and WelfareNaritaJapan
| | | | - Gen Murakami
- Division of Internal MedicineCupid‐Fair ClinicIwamizawaJapan
| | - Shinichi Abe
- Department of AnatomyTokyo Dental CollegeTokyoJapan
| |
Collapse
|
9
|
Ishizuka S, Yamamoto M, Hirouchi H, Yotsuya M, Ohkubo M, Sato M, Abe S. Muscle-Bone Relationship in Temporomandibular Joint Disorders after Partial Discectomy. J Oral Biosci 2021; 63:436-443. [PMID: 34555528 DOI: 10.1016/j.job.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Temporomandibular joint osteoarthritis (TMJ-OA) causes degenerative changes in TMJ tissues. The inter-tissue crosstalk that exacerbates illness and organic changes in bone secondary to TMJ-OA potentially affects the muscles; therefore, patients with a muscular disease might also suffer from bone disease. However, knowledge gaps exist concerning muscle pathology at the onset of TMJ-OA. In this study, we documented the pathogeneses of the bone and muscle at the onset of TMJ-OA using a mouse model. METHODS We performed a partial resection of the TMJ disk to establish a mouse model of TMJ-OA. After the onset of TMJ-OA, we performed various measurements at 8, 12, and 16 weeks post-surgery in the defined groups. RESULTS The volume of the mandibular head in the TMJ-OA group was significantly greater than that in the control group. The temporal muscles in the TMJ-OA group were significantly deformed compared with those in the control group; however, between-group comparisons did not reveal significant differences in the mandibular head or temporal muscles after surgery. Therefore, we hypothesized that the degree of mandibular head hypertrophy would alter the temporal muscles. A subsequent analysis of the correlation between the bone and muscle confirmed that the deformity of the temporal muscle increased with increasing hypertrophy of the mandibular head. Temporal and masseter muscle contact was observed in 25% of surgical groups. CONCLUSIONS This study demonstrates that TMJ-OA progressed when organic changes occurred in bones and muscles, supporting the symbiotic relationship between bones and muscles.
Collapse
Affiliation(s)
- Satoshi Ishizuka
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Hidetomo Hirouchi
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Mamoru Yotsuya
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Department of Fixed Prosthodontics, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Mai Ohkubo
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Department of Oral Health and Clinical Science, Division of Dysphagia Rehabilitation, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Masaki Sato
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Laboratory of Biology, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| |
Collapse
|
10
|
Yamamoto M, Chen HK, Hidetomo H, Watanabe A, Sakiyama K, Kim HJ, Murakami G, Rodríguez-Vázquez JF, Abe S. Superior labial artery and vein anastomosis configuration to be considered in lip augmentation. Ann Anat 2021; 239:151808. [PMID: 34324994 DOI: 10.1016/j.aanat.2021.151808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
The treatment of cleft lip and palate is performed over a long period, starting immediately after birth. However, esthetic problems remain after lip augmentation. Endothelial cells of new capillaries are important for wound healing. Thus, the reconstruction of vascular networks is key to postoperative wound healing during lip augmentation. However, studies describing the superior labial artery (SLA) and superior labial vein (SLV) are rare, and their mutual positional relationship thus remains unclear. We procured 29 adult cadavers and ten fetuses. Macroscopic and histological examinations were performed on adult cadavers. We extracted soft tissues and blood vessels after micro-computed tomography (CT) and 3D tissue reconstruction. We performed histological investigations of vascular networks within the cleft lip in fetal samples. In adults, the SLV was distributed throughout the cutaneous side of the orbicularis oris muscle and the SLA, throughout the mucosal side. The SLV and SLA were separated by this muscle. Micro-CT images revealed that the SLA on the mucosal side transversed the orbicularis oris muscle to the SLV (55%). Histological analysis of fetuses revealed that the SLA was on the mucosal side, similar to that in adults, and traversed the orbicularis oris muscle in continuity with the SLV of the cutaneous side (100%). In lip augmentation, the reconstruction of the vascular structure, which involves the anastomosis of SLA and SLV passing through the orbicularis oris muscle, is an important factor when considering esthetic repair.
Collapse
Affiliation(s)
- Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan.
| | - Hsiu-Kuo Chen
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan
| | - Hirouchi Hidetomo
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan
| | - Akira Watanabe
- Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan
| | - Koji Sakiyama
- Division of Anatomy, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Hee-Jin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan; Division of Internal Medicine, Jikou-kai Clinic of Home Visits, 4-4-18, Bieicho-Minamimachi, 071-0202 Kamikawa, Japan
| | | | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, 101-0061 Tokyo, Japan; Tokyo Dental College Research Branding Project, 2-9-18 Kanda-misakicho, Tokyo, 101-0061, Japan
| |
Collapse
|
11
|
Abe S, Yamamoto M. Factors Involved in Morphogenesis in the Muscle-Tendon-Bone Complex. Int J Mol Sci 2021; 22:6365. [PMID: 34198655 PMCID: PMC8232103 DOI: 10.3390/ijms22126365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
A decline in the body's motor functions has been linked to decreased muscle mass and function in the oral cavity and throat; however, aging of the junctions of the muscles and bones has also been identified as an associated factor. Basic and clinical studies on the muscles, tendons and bones, each considered independently, have been published. In recent years, however, research has focused on muscle attachment as the muscle-tendon-bone complex from various perspectives, and there is a growing body of knowledge on SRY-box9 (Sox9) and Mohawk(Mkx), which has been identified as a common controlling factor and a key element. Myostatin, a factor that inhibits muscle growth, has been identified as a potential key element in the mechanisms of lifetime structural maintenance of the muscle-tendon-bone complex. Findings in recent studies have also uncovered aspects of the mechanisms of motor organ complex morphostasis in the superaged society of today and will lay the groundwork for treatments to prevent motor function decline in older adults.
Collapse
Affiliation(s)
- Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kanda-misakicho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | | |
Collapse
|
12
|
Localization of T-cell factor 4 positive fibroblasts and CD206-positive macrophages during skeletal muscle regeneration in mice. Ann Anat 2021; 235:151694. [DOI: 10.1016/j.aanat.2021.151694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
|
13
|
Cho KH, Morimoto I, Yamamoto M, Hanada S, Murakami G, Rodríguez-Vázquez JF, Abe S. Fetal development of the human trapezius and sternocleidomastoid muscles. Anat Cell Biol 2020; 53:405-410. [PMID: 33361543 PMCID: PMC7769109 DOI: 10.5115/acb.20.202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
At present, there is no photographic evidence of splitting of the trapezius and sternocleidomastoid muscles (SCMs), which share a common anlage that extends caudally toward the limb bud in the embryo at a length of 9 mm. Therefore, the aim of the present study was to identify which structures divide the caudal end of the common anlage at the first sign of splitting into two muscles. In 11 mm-long specimens, the SCM and trapezius muscles were identified as a single mesenchymal condensation. In 15 and 18 mm-long specimens, the SCM and trapezius muscles were separated and extended posteriorly and lymphatic tissues appeared in a primitive lateral cervical space surrounded by the SCM (anterior). In 21 mm-long specimens, the lymphatic vessels were dilated and the accompanying afferents were forming connections with the subcutaneous tissue through a space between the SCM and trapezius muscles. In 27 mm-long specimens, cutaneous lymphatic vessels were evident and had entered the deep tissue between the SCM and trapezius muscles. Vascular dilation may be viewed as a result of less mechanical stress or pressure after muscle splitting.
Collapse
Affiliation(s)
- Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Korea
| | | | | | - Shinya Hanada
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Gen Murakami
- Division of Internal Medicine, Jikou-kai Clinic of Home Visits, Sapporo, Japan
| | | | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
14
|
Switching of Sox9 expression during musculoskeletal system development. Sci Rep 2020; 10:8425. [PMID: 32439983 PMCID: PMC7242482 DOI: 10.1038/s41598-020-65339-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/30/2020] [Indexed: 11/21/2022] Open
Abstract
The musculoskeletal system, which comprises muscles, tendons, and bones, is an efficient tissue complex that coordinates body movement and maintains structural stability. The process of its construction into a single functional and complex organization is unclear. SRY-box containing gene 9 (Sox9) is expressed initially in pluripotent cells and subsequently in ectodermal, endodermal, and mesodermal derivatives. This study investigated how Sox9 controls the development of each component of the musculoskeletal system. Sox9 was expressed in MTJ, tendon, and bone progenitor cells at E13 and in bone at E16. We detected Sox9 expression in muscle progenitor cells using double-transgenic mice and myoblastic cell lines. However, we found no Sox9 expression in developed muscle. A decrease in Sox9 expression in muscle-associated connective tissues, tendons, and bones led to hypoplasia of the cartilage and its attachment to tendons and muscle. These results showed that switching on Sox9 expression in each component (muscle, tendon, and bone) is essential for the development of the musculoskeletal system. Sox9 is expressed in not only tendon and bone progenitor cells but also muscle progenitor cells, and it controls musculoskeletal system development.
Collapse
|