1
|
Ivan P, Jana P, Teresa P, Zuzana K, Jan J, Michal S. Cough modulation by upper airway stimuli in cat - potential clinical application? ACTA ACUST UNITED AC 2016; 6:35-43. [PMID: 28944100 DOI: 10.4236/ojmip.2016.63004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The modulation of mechanically induced tracheobronchial cough was tested by applying various stimuli and the elicitation of other airway protective behaviors in pentobarbital anesthetized cats. Capsaicin and histamine were injected in the nose, and mechanical nylon fiber and / or air puff stimulation was applied to the nose and nasopharynx. Reflex responses of cough, sneeze, aspiration reflex and expiration reflex were induced mechanically. Swallow was initiated by the injection of water into oropharynx. Subthreshold mechanical stimulation of nasopharyngeal and nasal mucosa, as well as water stimulation in the oropharynx and larynx, with no motor response, had no effect on rhythmic coughing. Cough responsiveness and excitability increased with capsaicin and air puff stimuli delivered to the nose. Vice versa, the number of cough responses was reduced and cough latency increased when aspiration reflexes (>1) occurred before the cough stimulus or within inter-cough intervals (passive E2 cough phase). The occurrence of swallows increased the cough latency as well. Cough inspiratory and / or expiratory motor drive was enhanced by the occurrence of expiration reflexes, swallows, and sneezes and also by aspiration reflex within the inspiratory phase of cough and by nasal air puff stimuli. Complex central interactions, ordering and sequencing of motor acts from the airways may result in the disruption of cough rhythmic sequence but also in the enhancement of cough. Our data confirm that number of peripheral stimuli and respiratory motor responses significantly alters cough performance. We propose developing and testing stimulation paradigms that modify coughing and could be employed in correcting of inappropriate or excessive coughing.
Collapse
Affiliation(s)
- Poliacek Ivan
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics
| | - Plevkova Jana
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Pathophysiology
| | - Pitts Teresa
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University of Louisville, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery
| | - Kotmanova Zuzana
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics
| | - Jakus Jan
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics
| | - Simera Michal
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Institute of Medical Biophysics
| |
Collapse
|
2
|
Ioan I, Poussel M, Coutier L, Plevkova J, Poliacek I, Bolser DC, Davenport PW, Derelle J, Hanacek J, Tatar M, Marchal F, Schweitzer C, Fontana G, Varechova S. What is chronic cough in children? Front Physiol 2014; 5:322. [PMID: 25221517 PMCID: PMC4148026 DOI: 10.3389/fphys.2014.00322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/05/2014] [Indexed: 01/28/2023] Open
Abstract
The cough reflex is modulated throughout growth and development. Cough—but not expiration reflex—appears to be absent at birth, but increases with maturation. Thus, acute cough is the most frequent respiratory symptom during the first few years of life. Later on, the pubertal development seems to play a significant role in changing of the cough threshold during childhood and adolescence resulting in sex-related differences in cough reflex sensitivity in adulthood. Asthma is the major cause of chronic cough in children. Prolonged acute cough is usually related to the long-lasting effects of a previous viral airway infection or to the particular entity called protracted bacterial bronchitis. Cough pointers and type may orient toward specific etiologies, such as barking cough in croup or tracheomalacia, paroxystic whooping cough in Pertussis. Cough is productive in protracted bacterial bronchitis, sinusitis or bronchiectasis. Cough is usually associated with wheeze or dyspnea on exertion in asthma; however, it may be the sole symptom in cough variant asthma. Thus, pediatric cough has particularities differentiating it from adult cough, so the approach and management should be developmentally specific.
Collapse
Affiliation(s)
- Iulia Ioan
- Service D'explorations Fonctionnelles Pédiatriques, Hôpital D'enfants Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France
| | - Mathias Poussel
- Service Des Examens de la Fonction Respiratoire et de L'aptitude à L'exercice Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France ; EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université Lorraine Vandoeuvre, France
| | - Laurianne Coutier
- EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université Lorraine Vandoeuvre, France
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University Martin, Slovakia
| | - Ivan Poliacek
- Institute of Medical Biophysics, Jessenius Faculty of Medicine, Comenius University Martin, Slovakia
| | - Donald C Bolser
- Department of Physiological Sciences, University of Florida Gainesville, FL, USA
| | - Paul W Davenport
- Department of Physiological Sciences, University of Florida Gainesville, FL, USA
| | - Jocelyne Derelle
- Service de Médecine Infantile et de Génétique Clinique, Hôpital D'enfants Vandœuvre-lès-Nancy, France
| | - Jan Hanacek
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University Martin, Slovakia
| | - Milos Tatar
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University Martin, Slovakia
| | - François Marchal
- Service D'explorations Fonctionnelles Pédiatriques, Hôpital D'enfants Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France ; EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université Lorraine Vandoeuvre, France
| | - Cyril Schweitzer
- Service D'explorations Fonctionnelles Pédiatriques, Hôpital D'enfants Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France ; EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université Lorraine Vandoeuvre, France ; Service de Médecine Infantile et de Génétique Clinique, Hôpital D'enfants Vandœuvre-lès-Nancy, France
| | - Giovanni Fontana
- Department of Internal Medicine, University of Florence Florence, Italy
| | - Silvia Varechova
- Service D'explorations Fonctionnelles Pédiatriques, Hôpital D'enfants Centre Hospitalier Universitaire de Nancy, Vandoeuvre les Nancy, France ; EA 3450 DevAH - Laboratoire de Physiologie, Faculté de Médecine, Université Lorraine Vandoeuvre, France
| |
Collapse
|
3
|
Kondo T, Tanigaki T, Tsuji C, Watanabe H. Spirometric and flow-volume curve analysis in rats, and optimal parameters for estimating obstructive impairment. J Physiol Sci 2010; 60:309-16. [PMID: 20549421 PMCID: PMC10717888 DOI: 10.1007/s12576-010-0097-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
Abstract
We obtained flow-volume (F-V) curves in anesthetized rats by applying positive pressure on the body surface. To obtain the best curve, tracheal intubation with either a 12 or 13 gauge catheter and a surface pressure greater than 56 cmH(2)O was necessary. Peak expiratory flow rate (PEFR) and forced vital capacity (FVC) were shown to be optimal parameters for estimation of bronchoconstriction induced by methacholine inhalation while FEV(0.05) (forced expiratory volume at 0.05 s) and FEV(0.10) were of limited usefulness for this purpose. The descending segment of the F-V curve consisted of two or three phases, with later phases shortened during bronchoconstriction. In conclusion, PEFR and FVC are optimal parameters for estimation of bronchoconstriction in rats. The decreases in PEFR and FVC may reflect constriction in large and smaller airways, respectively.
Collapse
Affiliation(s)
- Tetsuri Kondo
- Department of Respiratory Medicine, Tokai University Hachioji Hospital, Hachioji, Tokyo, 192-0032, Japan.
| | | | | | | |
Collapse
|