1
|
The effective use of blebbistatin to study the action potential of cardiac pacemaker cells of zebrafish (Danio rerio) during incremental warming. Curr Res Physiol 2022; 5:48-54. [PMID: 35128467 PMCID: PMC8803472 DOI: 10.1016/j.crphys.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Blebbistatin potently inhibits actin-myosin interaction, preventing contractile activity of excitable cells including cardiac myocytes, despite electrical excitation of an action potential (AP). We collected intracellular microelectrode recordings of pacemaker cells located in the sinoatrial region (SAR) of the zebrafish heart at room temperature and during acute warming to investigate whether or not blebbistatin inhibition of contraction significantly alters pacemaker cell electrophysiology. Changes were evaluated based on 16 variables that characterized the AP waveform. None of these AP variables nor the spontaneous heart rate were significantly modified with the application of 10 μM blebbistatin when recordings were made at room temperature. Compared with the control group, the blebbistatin-treated group showed minor changes in the rate of spontaneous diastolic depolarization (P = 0.027) and the 50% and 80% repolarization (P = 0.008 and 0.010, respectively) in the 26°C–29°C temperature bin, but not at higher temperatures. These findings suggest that blebbistatin is an effective excitation-contraction uncoupler that does not appreciably affect APs generated in pacemaking cells of the SAR and can, therefore, be used in zebrafish cardiac studies. Blebbistatin uncouples excitation-contraction in zebrafish cardiomyocytes. Blebbistatin does not modify the pacemaker action potential variables. Temperature does not modify the effect of blebbistatin. First validation of the use of blebbistatin in adult fish. Methodology of intracellular microelectrode recording of zebrafish pacemaker cells.
Collapse
|
2
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Scardigli M, Cannazzaro S, Coppini R, Crocini C, Yan P, Loew LM, Sartiani L, Cerbai E, Pavone FS, Sacconi L, Ferrantini C. Arrhythmia susceptibility in a rat model of acute atrial dilation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:21-29. [PMID: 32063273 DOI: 10.1016/j.pbiomolbio.2019.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/17/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, associated with an increased risk of stroke and heart failure. Acute AF occurs in response to sudden increases of atrial hemodynamic load, leading to atrial stretch. The mechanisms of stretch-induced AF were investigated in large mammals with controversial results. We optimized an approach to monitor rat atrial electrical activity using a red-shifted voltage sensitive dye (VSD). The methodology includes cauterization of the main ventricular coronary arteries, allowing improved atrial staining by the VSD and appropriate atrial perfusion for long experiments. Next, we developed a rat model of acute biatrial dilation (ABD) through the insertion of latex balloons into both atria, which could be inflated with controlled volumes. A chronic model of atrial dilation (spontaneous hypertensive rats; SHR) was used for comparison. ABD was performed on atria from healthy Wistar-Kyoto (WKY) rats (WKY-ABD). The atria were characterized in terms of arrhythmias susceptibility, action potential duration and conduction velocity. The occurrence of arrhythmias in WKY-ABD was significantly higher compared to non-dilated WKY atria. In WKY-ABD we found a reduction of conduction velocity, similar to that observed in SHR atria, while action potential duration was unchanged. Low-dose caffeine was used to introduce a drop of CV in WKY atria (WKY-caff), quantitatively similar to the one observed after ABD, but no increased arrhythmia susceptibility was observed with caffeine only. In conclusion, CV decrease is not sufficient to promote arrhythmias; enlargement of atrial surface is essential to create a substrate for acute reentry-based arrhythmias.
Collapse
Affiliation(s)
- M Scardigli
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino (FI), Italy
| | - S Cannazzaro
- National Institute of Optics, National Research Council, 50125, Florence, Italy
| | - R Coppini
- Division of Pharmacology, Department "NeuroFarBa,", University of Florence, 50139, Florence, Italy
| | - C Crocini
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, USA
| | - P Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - L M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - L Sartiani
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - E Cerbai
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - F S Pavone
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino (FI), Italy; National Institute of Optics, National Research Council, 50125, Florence, Italy; Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino (FI), Italy
| | - L Sacconi
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino (FI), Italy; National Institute of Optics, National Research Council, 50125, Florence, Italy
| | - C Ferrantini
- European Laboratory for Non-Linear Spectroscopy, 50019, Sesto Fiorentino (FI), Italy; Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy.
| |
Collapse
|
4
|
Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models. Sci Rep 2017; 7:43217. [PMID: 28240274 PMCID: PMC5327492 DOI: 10.1038/srep43217] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/20/2017] [Indexed: 01/29/2023] Open
Abstract
Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.
Collapse
|
5
|
Abstract
Sino-atrial node (SAN) dysfunctions and associated complications constitute important causes of morbidity in patients with cardiac diseases. The development of novel pharmacological therapies to cure these patients relies on the thorough understanding of both normal physiology and pathophysiology of the SAN. Among the studies of cardiac pacemaking, the mouse SAN is widely used due to its feasibility for modifications in the expression of different genes that encode SAN ion channels or calcium handling proteins. Emerging evidence from electrophysiological and histological studies has also proved the representativeness and similarity of the mouse SAN structure and functions to larger mammals, including the presence of specialized conduction pathways from the SAN to the atrium and a complex pacemakers' hierarchy within the SAN. Recently, the technique of optical mapping has greatly facilitated the exploration and investigation of the origin of excitation and conduction within and from the mouse SAN, which in turn has extended the understanding of the SAN and benefited clinical treatments of SAN dysfunction associated diseases. In this manuscript, we have described in detail how to perform the optical mapping of the mouse SAN from the intact, Langendorff-perfused heart and from the isolated atrial preparation. This protocol is a useful tool to enhance the understanding of mouse SAN physiology and pathophysiology.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health;
| |
Collapse
|
6
|
Brack KE, Narang R, Winter J, Ng GA. The mechanical uncoupler blebbistatin is associated with significant electrophysiological effects in the isolated rabbit heart. Exp Physiol 2013; 98:1009-27. [PMID: 23291912 PMCID: PMC3734628 DOI: 10.1113/expphysiol.2012.069369] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Blebbistatin (BS) is a recently discovered inhibitor of the myosin II isoform and has been adopted as the mechanical uncoupler of choice for optical mapping, because previous studies suggest that BS has no significant cardiac electrophysiological effects in a number of species. The aim of this study was to determine whether BS affects cardiac electrophysiology in isolated New Zealand White rabbit hearts. Langendorff-perfused hearts (n= 39) in constant-flow mode had left ventricular monophasic action potential duration (MAPD) measured at apical and basal regions during constant pacing (300 ms cycle length). Standard action potential duration restitution was obtained using the single extrastimulus method with measurement of the maximal restitution slope. Ventricular fibrillation threshold was measured as the minimal current inducing sustained ventricular fibrillation with burst pacing (30 stimuli, at 30 ms intervals). Optical action potentials were recorded using the voltage-sensitive dye di-4-ANEPPS. Measurements were taken at baseline and after 60 min perfusion with BS (5 μm). Blebbistatin significantly prolonged left ventricular apical (mean ± SEM; from 129.9 ± 2.9 to 170.7 ± 4.1 ms, P < 0.001, n= 8) and basal MAPD (from 135.0 ± 2.3 to 163.3 ± 5.6 ms, P < 0.001) and effective refractory period (from 141.3 ± 4.8 to 175.6 ± 3.7 ms, P < 0.001) whilst increasing the maximal slope of restitution (apex, from 0.79 ± 0.09 to 1.57 ± 0.16, P < 0.001; and base, from 0.71 ± 0.06 to 1.44 ± 0.24, P < 0.001) and ventricular fibrillation threshold (from 5.3 ± 1.1 to 17.0 ± 2.9 mA, P < 0.001). In other hearts, blebbistatin significantly prolonged optically recorded action potentials (from 136.5 ± 6.3 to 173.0 ± 7.9 ms, P < 0.05, n= 4). In control experiments, the increase of MAPD with blebbistatin was present whether the hearts were perfused in constant-pressure mode (n= 5) or in unloaded conditions (n= 5). These data show that blebbistatin significantly affects cardiac electrophysiology. Its use in optical mapping studies should be treated with caution.
Collapse
Affiliation(s)
- Kieran E Brack
- Department of Cardiovascular Sciences, Cardiology group, University of Leicester, and Leicester NIHR Biomedical Research Unit in Cardiovascular Disease,Clinical Sciences Wing, Glenfield Hospital, Leicester LE3 9QP, UK
| | | | | | | |
Collapse
|
7
|
Swift LM, Asfour H, Posnack NG, Arutunyan A, Kay MW, Sarvazyan N. Properties of blebbistatin for cardiac optical mapping and other imaging applications. Pflugers Arch 2012; 464:503-12. [PMID: 22990759 DOI: 10.1007/s00424-012-1147-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/20/2012] [Indexed: 11/27/2022]
Abstract
Blebbistatin is a recently discovered myosin II inhibitor. It is rapidly becoming a compound of choice to reduce motion artifacts during cardiac optical mapping, as well as to study cell motility and cell invasion. Although blebbistatin has a number of advantages over other electromechanical uncouplers, many of its properties have yet to be addressed. Here we describe several methodological issues associated with the use of blebbistatin, including its spectral properties, reversibility, and its effect on tissue metabolic state. We show that if precautions are not taken, perfusion with blebbistatin may result in blebbistatin precipitate that accumulates in the vasculature. Although such precipitate is fluorescent, it is not detectable within wavelength bands that are typically used for transmembrane voltage fluorescence imaging (i.e., emission wavelengths >600 nm). Therefore, blockage of the microcirculation by blebbistatin may cause data misinterpretation in studies that use voltage-sensitive dyes. Blebbistatin may also impact imaging of green fluorophores due to the spectral shift it causes in endogenous tissue fluorescence. 3D excitation-emission matrices of blebbistatin in precipitate form and in various solutions (DMSO, water, and 1 % aqueous albumin) revealed significant changes in the fluorescence of this molecule in different environments. Finally, we examined the reversibility of blebbistatin's uncoupling effect on cardiac contraction. Our findings provide important new information about the properties of this myosin II inhibitor, which will aid in the proper design and interpretation of studies that use this compound.
Collapse
Affiliation(s)
- Luther M Swift
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
| | | | | | | | | | | |
Collapse
|