1
|
Boulgakoff L, D'Amato G, Miquerol L. Molecular Regulation of Cardiac Conduction System Development. Curr Cardiol Rep 2024; 26:943-952. [PMID: 38990492 DOI: 10.1007/s11886-024-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW The cardiac conduction system, composed of pacemaker cells and conducting cardiomyocytes, orchestrates the propagation of electrical activity to synchronize heartbeats. The conduction system plays a crucial role in the development of cardiac arrhythmias. In the embryo, the cells of the conduction system derive from the same cardiac progenitors as the contractile cardiomyocytes and and the key question is how this choice is made during development. RECENT FINDINGS This review focuses on recent advances in developmental biology using the mouse as animal model to better understand the cellular origin and molecular regulations that control morphogenesis of the cardiac conduction system, including the latest findings in single-cell transcriptomics. The conducting cell fate is acquired during development starting with pacemaking activity and last with the formation of a complex fast-conducting network. Cardiac conduction system morphogenesis is controlled by complex transcriptional and gene regulatory networks that differ in the components of the cardiac conduction system.
Collapse
Affiliation(s)
| | - Gaetano D'Amato
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France.
| |
Collapse
|
2
|
Hamaguchi S, Agata N, Seki M, Namekata I, Tanaka H. Developmental Changes in the Excitation-Contraction Mechanisms of the Ventricular Myocardium and Their Sympathetic Regulation in Small Experimental Animals. J Cardiovasc Dev Dis 2024; 11:267. [PMID: 39330325 PMCID: PMC11432613 DOI: 10.3390/jcdd11090267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 09/28/2024] Open
Abstract
The developmental changes in the excitation-contraction mechanisms of the ventricular myocardium of small animals (guinea pig, rat, mouse) and their sympathetic regulation will be summarized. The action potential duration monotonically decreases during pre- and postnatal development in the rat and mouse, while in the guinea pig it decreases during the fetal stage but turns into an increase just before birth. Such changes can be attributed to changes in the repolarizing potassium currents. The T-tubule and the sarcoplasmic reticulum are scarcely present in the fetal cardiomyocyte, but increase during postnatal development. This causes a developmental shift in the Ca2+ handling from a sarcolemma-dependent mechanism to a sarcoplasmic reticulum-dependent mechanism. The sensitivity for beta-adrenoceptor-mediated positive inotropy decreases during early postnatal development, which parallels the increase in sympathetic nerve innervation. The alpha-adrenoceptor-mediated inotropy in the mouse changes from positive in the neonate to negative in the adult. This can be explained by the change in the excitation-contraction mechanism mentioned above. The shortening of the action potential duration enhances trans-sarcolemmal Ca2+ extrusion by the Na+-Ca2+ exchanger. The sarcoplasmic reticulum-dependent mechanism of contraction in the adult allows Na+-Ca2+ exchanger activity to cause negative inotropy, a mechanism not observed in neonatal myocardium. Such developmental studies would provide clues towards a more comprehensive understanding of cardiac function.
Collapse
Affiliation(s)
| | | | | | | | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi 274-8510, Japan; (S.H.); (N.A.); (M.S.); (I.N.)
| |
Collapse
|
3
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. Human Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:3-55. [PMID: 38884703 DOI: 10.1007/978-3-031-44087-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Many aspects of heart development are topographically complex and require three-dimensional (3D) reconstruction to understand the pertinent morphology. We have recently completed a comprehensive primer of human cardiac development that is based on firsthand segmentation of structures of interest in histological sections. We visualized the hearts of 12 human embryos between their first appearance at 3.5 weeks and the end of the embryonic period at 8 weeks. The models were presented as calibrated, interactive, 3D portable document format (PDF) files. We used them to describe the appearance and the subsequent remodeling of around 70 different structures incrementally for each of the reconstructed stages. In this chapter, we begin our account by describing the formation of the single heart tube, which occurs at the end of the fourth week subsequent to conception. We describe its looping in the fifth week, the formation of the cardiac compartments in the sixth week, and, finally, the septation of these compartments into the physically separated left- and right-sided circulations in the seventh and eighth weeks. The phases are successive, albeit partially overlapping. Thus, the basic cardiac layout is established between 26 and 32 days after fertilization and is described as Carnegie stages (CSs) 9 through 14, with development in the outlet component trailing that in the inlet parts. Septation at the venous pole is completed at CS17, equivalent to almost 6 weeks of development. During Carnegie stages 17 and 18, in the seventh week, the outflow tract and arterial pole undergo major remodeling, including incorporation of the proximal portion of the outflow tract into the ventricles and transfer of the spiraling course of the subaortic and subpulmonary channels to the intrapericardial arterial trunks. Remodeling of the interventricular foramen, with its eventual closure, is complete at CS20, which occurs at the end of the seventh week. We provide quantitative correlations between the age of human and mouse embryos as well as the Carnegie stages of development. We have also set our descriptions in the context of variations in the timing of developmental features.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Present address: Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Ichise N, Sato T, Fusagawa H, Yamazaki H, Kudo T, Ogon I, Tohse N. Ultrastructural Assessment and Proteomic Analysis in Myofibrillogenesis in the Heart Primordium After Heartbeat Initiation in Rats. Front Physiol 2022; 13:907924. [PMID: 35615667 PMCID: PMC9124805 DOI: 10.3389/fphys.2022.907924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Myofibrillogenesis is an essential process for cardiogenesis and is closely related to excitation-contraction coupling and the maintenance of heartbeat. It remains unclear whether the formation of myofibrils and sarcomeres is associated with heartbeat initiation in the early embryonic heart development. Here, we investigated the association between the ultrastructure of myofibrils assessed by transmission electron microscopy and their proteomic profiling assessed by data-independent acquisition mass spectrometry (DIA-MS) in the rat heart primordia before and after heartbeat initiation at embryonic day 10.0, when heartbeat begins in rats, and in the primitive heart tube at embryonic day 11.0. Bundles of myofilaments were scattered in a few cells of the heart primordium after heartbeat initiation, whereas there were no typical sarcomeres in the heart primordia both before and after heartbeat initiation. Sarcomeres with Z-lines were identified in cells of the primitive heart tube, though myofilaments were not aligned. DIA-MS proteome analysis revealed that only 43 proteins were significantly upregulated by more than 2.0 fold among a total of 7,762 detected proteins in the heart primordium after heartbeat initiation compared with that before heartbeat initiation. Indeed, of those upregulated proteins, 12 (27.9%) were constituent proteins of myofibrils and 10 (23.3%) were proteins that were accessories and regulators for myofibrillogenesis, suggesting that upregulated proteins that are associated with heartbeat initiation were enriched in myofibrillogenesis. Collectively, our results suggest that the establishment of heartbeat is induced by development of bundles of myofilaments with upregulated proteins associated with myofibrillogensis, whereas sarcomeres are not required for the initial heartbeat.
Collapse
Affiliation(s)
- Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiovascular, Renal, and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- *Correspondence: Tatsuya Sato,
| | - Hiroyori Fusagawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Yamazaki
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taiki Kudo
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Izaya Ogon
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
5
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. A pictorial account of the human embryonic heart between 3.5 and 8 weeks of development. Commun Biol 2022; 5:226. [PMID: 35277594 PMCID: PMC8917235 DOI: 10.1038/s42003-022-03153-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is topographically complex and requires visualization to understand its progression. No comprehensive 3-dimensional primer of human cardiac development is currently available. We prepared detailed reconstructions of 12 hearts between 3.5 and 8 weeks post fertilization, using Amira® 3D-reconstruction and Cinema4D®-remodeling software. The models were visualized as calibrated interactive 3D-PDFs. We describe the developmental appearance and subsequent remodeling of 70 different structures incrementally, using sequential segmental analysis. Pictorial timelines of structures highlight age-dependent events, while graphs visualize growth and spiraling of the wall of the heart tube. The basic cardiac layout is established between 3.5 and 4.5 weeks. Septation at the venous pole is completed at 6 weeks. Between 5.5 and 6.5 weeks, as the outflow tract becomes incorporated in the ventricles, the spiraling course of its subaortic and subpulmonary channels is transferred to the intrapericardial arterial trunks. The remodeling of the interventricular foramen is complete at 7 weeks.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Sato T, Ichise N, Kobayashi T, Fusagawa H, Yamazaki H, Kudo T, Tohse N. Enhanced glucose metabolism through activation of HIF-1α covers the energy demand in a rat embryonic heart primordium after heartbeat initiation. Sci Rep 2022; 12:74. [PMID: 34996938 PMCID: PMC8741773 DOI: 10.1038/s41598-021-03832-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
The initiation of heartbeat is an essential step in cardiogenesis in the heart primordium, but it remains unclear how intracellular metabolism responds to increased energy demands after heartbeat initiation. In this study, embryos in Wistar rats at embryonic day 10, at which heartbeat begins in rats, were divided into two groups by the heart primordium before and after heartbeat initiation and their metabolic characteristics were assessed. Metabolome analysis revealed that increased levels of ATP, a main product of glucose catabolism, and reduced glutathione, a by-product of the pentose phosphate pathway, were the major determinants in the heart primordium after heartbeat initiation. Glycolytic capacity and ATP synthesis-linked mitochondrial respiration were significantly increased, but subunits in complexes of mitochondrial oxidative phosphorylation were not upregulated in the heart primordium after heartbeat initiation. Hypoxia-inducible factor (HIF)-1α was activated and a glucose transporter and rate-limiting enzymes of the glycolytic and pentose phosphate pathways, which are HIF-1α-downstream targets, were upregulated in the heart primordium after heartbeat initiation. These results suggest that the HIF-1α-mediated enhancement of glycolysis with activation of the pentose phosphate pathway, potentially leading to antioxidant defense and nucleotide biosynthesis, covers the increased energy demand in the beating and developing heart primordium.
Collapse
Affiliation(s)
- Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Nobutoshi Ichise
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takeshi Kobayashi
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroyori Fusagawa
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroya Yamazaki
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Taiki Kudo
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
7
|
Tyser RCV, Srinivas S. The First Heartbeat-Origin of Cardiac Contractile Activity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037135. [PMID: 31767652 DOI: 10.1101/cshperspect.a037135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The amniote embryonic heart starts as a crescent of mesoderm that transitions through a midline linear heart tube in the course of developing into the four chambered heart. It is unusual in having to contract rhythmically while still undergoing extensive morphogenetic remodeling. Advances in imaging have allowed us to determine when during development this contractile activity starts. In the mouse, focal regions of contractions can be detected as early as the cardiac crescent stage. Calcium transients, required to trigger contraction, can be detected even earlier, prior to contraction. In this review, we outline what is currently known about how this early contractile function is initiated and the impact early contractile function has on cardiac development.
Collapse
Affiliation(s)
- Richard C V Tyser
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| |
Collapse
|
8
|
Shevchenko KM. Morphological features of atrial myocardium embryonic development and its changes caused by hypoxia effect. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mortality and morbidity during the prenatal period of development remain a real problem at the present time. The Scientific Committee EURO-PERISTAT has revealed that mortality of fetuses associated with congenital abnormalities is on average 15–20% across Europe. Hypoxia is one of the top causes of death of fetuses. Since the heart begins to function before birth, influence of teratogenic factors leads to formation of anomalies of its development. Congenital heart defects are the most common of these and occur with a frequency of 24%. Abnormalities associated with the atrium occur with frequency of 6.4 per 10,000 cases. Investigation of structural changes of the atrial myocardium is a key for understanding of pathogenic mechanisms of cardiovascular diseases that are caused by influence of hypoxia. Nowadays, a great deal of research is being dedicated to normal cardiogenesis and much less work is focused on abnormal heart development. There are numerous teratogenic factors such as alcohol, retinoic acid, hyperthermia, hypoxia that are most common causes of heart diseases. The attention of researchers has been predominantly focused on study of changes of the ventricular myocardium under the effect of hypoxia. It is known that the atrium is different from the ventricles by derivation, development and structure. Therefore, the effects of pathological factors on the atrial myocardium will be different as complared to their effect on the ventricles. Also, almost all research has focused on study of consequences of hypoxia at the late stages of cardiogenesis. However, the greatest number of abnormalities is associated with the early embryonic period, as structures that continue development are more sensitive to the effects of harmful factors. Thus, comparative analysis of scientific research devoted to morphological study of atrial myocardium transformations on the cellular and ultrastructural levels under the influence of hypoxia during the stages of cardiogenesis is an important task.
Collapse
|
9
|
Ritchie HE, Telenius C, Gustaffson E, Webster WS. The effects of nifedipine and ivabradine on the functionality of the early rat embryonic heart. Are these drugs a risk in early human pregnancy? Birth Defects Res 2019; 111:281-288. [PMID: 30653849 DOI: 10.1002/bdr2.1457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/10/2018] [Accepted: 12/28/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND When the human heart begins its earliest contractions from day 21, it lacks a functional autonomic nerve supply. Instead, contractions are generated by regular calcium transients later augmented by the funny current (If ) produced by sinoatrial-like cells. This study examined effects of blocking these currents in the early rat embryonic heart. METHODS Rat embryos were incubated in vitro with either the calcium channel blocker nifedipine and/or the funny current (If ) blocker ivabradine for 1 hr to examine the effects of these drugs on the activity of the embryonic heart. RESULTS On gestational day (GD) 10, nifedipine (0.45-1.8 μM) caused asystole at high concentrations (8/10 embryos at 1.8 μM and 3/10 embryos at 0.9 μM) and markedly increased embryonic heart rate (EHR) in all surviving embryos but likely reduced blood flow due to weak contractions. Ivabradine (1.5 μM) caused a 29% reduction in EHR in GD 10 embryos and a greater than 50% reduction in EHR for GD 11-14 embryos. Combined exposure to both nifedipine and ivabradine resulted in an additive effect. The increased EHR due to nifedipine was reduced by the ivabradine. CONCLUSION The results suggest that exposure to nifedipine in human pregnancy 3-4 weeks postfertilization may cause a direct effect on the embryonic heart resulting in reduced blood flow leading to abnormal heart and/or blood vessel development and/or embryonic death. Accidental exposure to ivabradine in the organogenic period would be expected to cause embryonic bradycardia, hypoxia, malformations, and embryonic death. This drug is currently contraindicated in pregnancy.
Collapse
Affiliation(s)
- Helen E Ritchie
- Discipline of Biomedical Sciences, Sydney School of Medical Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolina Telenius
- Discipline of Anatomy and Histology, Sydney School of Medical Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Elin Gustaffson
- Discipline of Anatomy and Histology, Sydney School of Medical Science, The University of Sydney, Sydney, New South Wales, Australia
| | - William S Webster
- Discipline of Anatomy and Histology, Sydney School of Medical Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Al Madhoun AS, Voronova A, Ryan T, Zakariyah A, McIntire C, Gibson L, Shelton M, Ruel M, Skerjanc IS. Testosterone enhances cardiomyogenesis in stem cells and recruits the androgen receptor to the MEF2C and HCN4 genes. J Mol Cell Cardiol 2013; 60:164-171. [PMID: 23598283 DOI: 10.1016/j.yjmcc.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 03/06/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023]
Abstract
Since a previous study (Goldman-Johnson et al., 2008 [4]) has shown that androgens can stimulate increased differentiation of mouse embryonic stem (mES) cells into cardiomyocytes using a genomic pathway, the aim of our study is to elucidate the molecular mechanisms regulating testosterone-enhanced cardiomyogenesis. Testosterone upregulated cardiomyogenic transcription factors, including GATA4, MEF2C, and Nkx2.5, muscle structural proteins, and the pacemaker ion channel HCN4 in a dose-dependent manner, in mES cells and P19 embryonal carcinoma cells. Knock-down of the androgen receptor (AR) or treatment with anti-androgenic compounds inhibited cardiomyogenesis, supporting the requirement of the genomic pathway. Chromatin immunoprecipitation (ChIP) studies showed that testosterone enhanced recruitment of AR to the regulatory regions of MEF2C and HCN4 genes, which was associated with increased histone acetylation. In summary, testosterone upregulated cardiomyogenic transcription factor and HCN4 expression in stem cells. Further, testosterone induced cardiomyogenesis, at least in part, by recruiting the AR receptor to the regulatory regions of the MEF2C and HCN4 genes. These results provide a detailed molecular analysis of the function of testosterone in stem cells and may offer molecular insight into the role of steroids in the heart.
Collapse
Affiliation(s)
- Ashraf Said Al Madhoun
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|