1
|
Viswanathan R, Selvakumar R, Malathi P, Sundar AR, Durai AA, Nithyanantham R, Manivannan K. Impact of Wilt on Flowering and Ratoon Establishment in Parental Clones of Sugarcane. SUGAR TECH 2025; 27:681-693. [DOI: 10.1007/s12355-024-01526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
|
2
|
Viswanathan R. Degeneration in Sugarcane Varieties: Does the Sugar Industry Realize it? SUGAR TECH 2024; 26:1501-1504. [DOI: 10.1007/s12355-024-01439-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/15/2024] [Indexed: 01/11/2025]
|
3
|
Daugrois J, Roumagnac P, Julian C, Filloux D, Putra L, Mollov D, Rott P. Historical Review of Sugarcane Streak Mosaic Virus that Has Recently Emerged in Africa. PHYTOPATHOLOGY 2024; 114:668-680. [PMID: 37966994 DOI: 10.1094/phyto-08-23-0291-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Sugarcane streak mosaic virus (SCSMV), now assigned to the genus Poacevirus of the family Potyviridae, was reported for the first time in 1932 in Louisiana and was believed to be strain F of sugarcane mosaic virus (SCMV) for more than six decades. SCMV-F was renamed SCSMV in 1998 after partial sequencing of its genome and phylogenetic investigations. Following the development of specific molecular diagnostic methods in the 2000s, SCSMV was recurrently found in sugarcane exhibiting streak mosaic symptoms in numerous Asian countries but not in the Western hemisphere or in Africa. In this review, we give an overview of the current knowledge on this disease and the progression in research on SCSMV. This includes symptoms, geographical distribution and incidence, diagnosis and genetic diversity of the virus, epidemiology, and control. Finally, we highlight future challenges, as sugarcane streak mosaic has recently been found in Africa, where this disease represents a new threat to sugarcane production.
Collapse
Affiliation(s)
- Jean Daugrois
- CIRAD, UMR PHIM, 34098 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34098 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Charlotte Julian
- CIRAD, UMR PHIM, 34098 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Denis Filloux
- CIRAD, UMR PHIM, 34098 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Lilik Putra
- Indonesian Sugar Research Institute, Pasuruan, Indonesia
| | - Dimitre Mollov
- U.S. Department of Agriculture-Agricultural Research Service, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR 97330, U.S.A
| | - Philippe Rott
- CIRAD, UMR PHIM, 34098 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
4
|
Vamsi Krishna G, Manoj Kumar V, Kishore Varma P, Bhavani B, Vijaya Kumar G. Identification of resistance to Sugarcane mosaic virus, Sugarcane streak mosaic virus, and Sugarcane bacilliform virus in new elite sugarcane accessions in India. Front Microbiol 2023; 14:1276932. [PMID: 37928678 PMCID: PMC10623450 DOI: 10.3389/fmicb.2023.1276932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Sugarcane mosaic and leaf fleck diseases are significant viral diseases affecting sugarcane crops in India. The use of resistant sugarcane varieties is considered the most economical and effective approach to manage viral diseases, especially in vegetatively propagated crops such as sugarcane. Sugarcane mosaic virus (SCMV) and Sugarcane streak mosaic virus (SCSMV) are the primary pathogens responsible for mosaic disease in sugarcane-growing regions of India. Sugarcane bacilliform virus (SCBV), causing leaf fleck disease, is also often found in mixed infections with mosaic symptoms. The study aimed to identify new sources of resistance by screening sugarcane germplasm for resistance to SCMV, SCSMV, and SCBV. The screening was carried out under high inoculum using the infector row method in both plant and ratoon crops. Out of 129 genotypes tested, only 8 were found to be free of mosaic viruses, indicating a rare occurrence of resistant sources. The study revealed that mosaic disease is widespread, with nearly 95% of tested varieties/genotypes being infected with mosaic viruses. SCMV, SCSMV, and SCBV were detected in 121 out of 129 genotypes using the RT-PCR and PCR assays. Based on their response to the viruses, the tested genotypes were categorized into different resistance grades: highly resistant (grade 1), resistant (grade 2), moderately resistant (grade 3), susceptible (grade 4), and highly susceptible (grade 5). The results of the study provide valuable information about elite resistance resources that can be used for the prevention and control of mosaic disease. These resistant genotypes could also serve as potential donors for mosaic and leaf fleck disease resistance in breeding programs.
Collapse
Affiliation(s)
- G. Vamsi Krishna
- Department of Plant Pathology, Agricultural College, Bapatla, Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - V. Manoj Kumar
- Department of Plant Pathology, Agricultural College, Bapatla, Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - P. Kishore Varma
- Department of Plant Pathology, Regional Agricultural Research Station (RARS), Lam, Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - B. Bhavani
- Department of Entomology, District Agricultural Advisory and Transfer of Technology Centre (DAATTC), Amalapuram, Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - G. Vijaya Kumar
- Department of Crop Physiology, Agricultural College, Bapatla, Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| |
Collapse
|
5
|
Viswanathan R, Nithya K, Vishnuvardhan J, Balasaravanan S, Kaverinathan K, Visalatchi D. Sorghum (Sorghum bicolor) a new host to sugarcane yellow leaf and mosaic viruses in India. INDIAN PHYTOPATHOLOGY 2023; 76:867-877. [DOI: 10.1007/s42360-023-00662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 01/11/2025]
|
6
|
Bertasello LET, da Silva MF, Pinto LR, Nóbile PM, Carmo-Sousa M, dos Anjos IA, Perecin D, Spotti Lopes JR, Gonçalves MC. Yellow Leaf Disease Resistance and Melanaphis sacchari Preference in Commercial Sugarcane Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:3079. [PMID: 37687326 PMCID: PMC10489660 DOI: 10.3390/plants12173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Sugarcane yellow leaf disease (YLD) caused by sugarcane yellow leaf virus (ScYLV) is a major threat for the sugarcane industry worldwide, and the aphid Melanaphis sacchari is its main vector. Breeding programs in Brazil have provided cultivars with intermediate resistance to ScYLV, whereas the incidence of ScYLV has been underestimated partly due to the complexity of YLD symptom expression and identification. Here, we evaluated YLD symptoms in a field assay using eight sugarcane genotypes comprising six well-established commercial high-sucrose cultivars, one biomass yield cultivar, and a susceptible reference under greenhouse conditions, along with estimation of virus titer through RT-qPCR from leaf samples. Additionally, a free-choice bioassay was used to determine the number of aphids feeding on the SCYLV-infected cultivars. Most of the cultivars showed some degree of resistance to YLD, while also revealing positive RT-qPCR results for ScYLV and virus titers with non-significant correlation with YLD severity. The cultivars IACSP01-5503 and IACBIO-266 were similar in terms of aphid preference and ScYLV resistance traits, whereas the least preferred cultivar by M. sacchari, IACSP96-7569, showed intermediate symptoms but similar virus titer to the susceptible reference, SP71-6163. We conclude that current genetic resistance incorporated into sugarcane commercial cultivars does not effectively prevent the spread of ScYLV by its main aphid vector.
Collapse
Affiliation(s)
- Luiz Eduardo Tilhaqui Bertasello
- School of Agricultural and Veterinary Sciences-FCAV, São Paulo State University-UNESP, Jaboticabal 17884-900, Brazil; (L.E.T.B.); (L.R.P.); (D.P.)
| | - Marcel Fernando da Silva
- Sugarcane Research Centre, Instituto Agronômico de Campinas-IAC, Ribeirão Preto 14001-970, Brazil; (M.F.d.S.); (P.M.N.); (I.A.d.A.)
| | - Luciana Rossini Pinto
- School of Agricultural and Veterinary Sciences-FCAV, São Paulo State University-UNESP, Jaboticabal 17884-900, Brazil; (L.E.T.B.); (L.R.P.); (D.P.)
- Sugarcane Research Centre, Instituto Agronômico de Campinas-IAC, Ribeirão Preto 14001-970, Brazil; (M.F.d.S.); (P.M.N.); (I.A.d.A.)
| | - Paula Macedo Nóbile
- Sugarcane Research Centre, Instituto Agronômico de Campinas-IAC, Ribeirão Preto 14001-970, Brazil; (M.F.d.S.); (P.M.N.); (I.A.d.A.)
| | - Michele Carmo-Sousa
- Department of Entomology and Acarology, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil; (M.C.-S.); (J.R.S.L.)
| | - Ivan Antônio dos Anjos
- Sugarcane Research Centre, Instituto Agronômico de Campinas-IAC, Ribeirão Preto 14001-970, Brazil; (M.F.d.S.); (P.M.N.); (I.A.d.A.)
| | - Dilermando Perecin
- School of Agricultural and Veterinary Sciences-FCAV, São Paulo State University-UNESP, Jaboticabal 17884-900, Brazil; (L.E.T.B.); (L.R.P.); (D.P.)
| | - João Roberto Spotti Lopes
- Department of Entomology and Acarology, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil; (M.C.-S.); (J.R.S.L.)
| | - Marcos Cesar Gonçalves
- School of Agricultural and Veterinary Sciences-FCAV, São Paulo State University-UNESP, Jaboticabal 17884-900, Brazil; (L.E.T.B.); (L.R.P.); (D.P.)
- Crop Protection Research Centre, Instituto Biológico-IB, São Paulo 04014-002, Brazil
| |
Collapse
|
7
|
Islam MS, Corak K, McCord P, Hulse-Kemp AM, Lipka AE. A first look at the ability to use genomic prediction for improving the ratooning ability of sugarcane. FRONTIERS IN PLANT SCIENCE 2023; 14:1205999. [PMID: 37600177 PMCID: PMC10433174 DOI: 10.3389/fpls.2023.1205999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023]
Abstract
The sugarcane ratooning ability (RA) is the most important target trait for breeders seeking to enhance the profitability of sugarcane production by reducing the planting cost. Understanding the genetics governing the RA could help breeders by identifying molecular markers that could be used for genomics-assisted breeding (GAB). A replicated field trial was conducted for three crop cycles (plant cane, first ratoon, and second ratoon) using 432 sugarcane clones and used for conducting genome-wide association and genomic prediction of five sugar and yield component traits of the RA. The RA traits for economic index (EI), stalk population (SP), stalk weight (SW), tonns of cane per hectare (TCH), and tonns of sucrose per hectare (TSH) were estimated from the yield and sugar data. A total of six putative quantitative trait loci and eight nonredundant single-nucleotide polymorphism (SNP) markers were associated with all five tested RA traits and appear to be unique. Seven putative candidate genes were colocated with significant SNPs associated with the five RA traits. The genomic prediction accuracies for those tested traits were moderate and ranged from 0.21 to 0.36. However, the models fitting fixed effects for the most significant associated markers for each respective trait did not give any advantages over the standard models without fixed effects. As a result of this study, more robust markers could be used in the future for clone selection in sugarcane, potentially helping resolve the genetic control of the RA in sugarcane.
Collapse
Affiliation(s)
| | - Keo Corak
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, United States
| | - Per McCord
- Sugarcane Field Station, USDA-ARS, Canal Point, FL, United States
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Amanda M. Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, United States
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Alexander E. Lipka
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
8
|
Surya Krishna S, Viswanathan R, Valarmathi R, Lakshmi K, Appunu C. CRISPR/Cas-Mediated Genome Editing Approach for Improving Virus Resistance in Sugarcane. SUGAR TECH 2023; 25:735-750. [DOI: 10.1007/s12355-023-01252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 01/11/2025]
|
9
|
Nithya K, Parameswari B, Kumar S, Annadurai A, Nithyanantham R, Mahadevaswamy HK, Viswanathan R. Prospecting true ScYLV resistance in Saccharum hybrid parental population in India by symptom phenotyping and viral titre quantification. 3 Biotech 2023; 13:125. [PMID: 37041801 PMCID: PMC10082694 DOI: 10.1007/s13205-023-03541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
UNLABELLED In sugarcane (Saccharum spp. hybrids) cultivation, viral diseases pose a great challenge across the globe. Yellow leaf (YL) disease is one of the important viral diseases caused by Sugarcane yellow leaf virus (ScYLV), a positive-sense ssRNA virus, genus Polerovirus, family Solemoviridae. The disease symptoms appear in later stages of crop growth during grand growth to maturity phase with intense midrib yellowing in the abaxial leaf surface. At present, this disease is managed through tissue (meristem) culture and healthy seed nurseries in India. However, the virus-free plants are infected quickly by secondary inoculum from aphid vectors in the field, which necessitates the importance of developing YL-resistant varieties. We screened about 600-625 sugarcane parental clones to identify true YL resistance based on 0-5 disease rating scale since 2015 and categorised them as resistant, moderately resistant, moderately susceptible, susceptible and highly susceptible. Leaf samples were collected from all these categories of plants during 2018-20 for the viral titre estimation through absolute quantification method (qRT-PCR assay). The viral load was invariably high in all categories of susceptible samples that ranged from 4.40 × 102 to 8.429 × 106, whereas in YL-free asymptomatic clones, the viral load ranged from 82.35 ± 5.90 to 5.121 × 104. The results clearly indicated that highest viral titre of 105-107 copies was present in all the susceptible clones irrespective of their disease severity grades. Our results clearly established that about 22.85% of apparently resistant sugarcane clones remained free from YL symptoms with significantly low ScYLV titre although we could not find a significant correlation between virus titre and symptom expression. The identified resistant parents will serve as sources of YL resistance to develop virus resistant sugarcane varieties. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-023-03541-y.
Collapse
Affiliation(s)
- K. Nithya
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007 India
| | - B. Parameswari
- ICAR-National Bureau of Plant Genetic Resources, Regional Station, Hyderabad, 500030 India
- ICAR-Sugarcane Breeding Institute, Research Centre, Karnal, Haryana 132001 India
| | - Subham Kumar
- ICAR-Sugarcane Breeding Institute, Research Centre, Karnal, Haryana 132001 India
| | - A. Annadurai
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007 India
| | | | | | - R. Viswanathan
- ICAR-Sugarcane Breeding Institute, Coimbatore, 641007 India
| |
Collapse
|
10
|
Lu G, Wang Z, Pan YB, Wu Q, Cheng W, Xu F, Dai S, Li B, Que Y, Xu L. Identification of QTLs and critical genes related to sugarcane mosaic disease resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1107314. [PMID: 36818882 PMCID: PMC9932707 DOI: 10.3389/fpls.2023.1107314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Mosaic viral diseases affect sugarcane productivity worldwide. Mining disease resistance-associated molecular markers or genes is a key component of disease resistance breeding programs. In the present study, 285 F1 progeny were produced from a cross between Yuetang 93-159, a moderately resistant variety, and ROC22, a highly susceptible variety. The mosaic disease symptoms of these progenies, with ROC22 as the control, were surveyed by natural infection under 11 different environmental conditions in the field and by artificial infections with a mixed sugarcane mosaic virus (SCMV) and sorghum mosaic virus (SrMV) inoculum. Analysis of consolidated survey data enabled the identification of 29 immune, 55 highly resistant, 70 moderately resistant, 62 susceptible, and 40 highly susceptible progenies. The disease response data and a high-quality SNP genetic map were used in quantitative trait locus (QTL) mapping. The results showed that the correlation coefficients (0.26~0.91) between mosaic disease resistance and test environments were significant (p< 0.001), and that mosaic disease resistance was a highly heritable quantitative trait (H2 = 0.85). Seven mosaic resistance QTLs were located to the SNP genetic map, each QTL accounted for 3.57% ~ 17.10% of the phenotypic variation explained (PVE). Furthermore, 110 pathogen response genes and 69 transcription factors were identified in the QTLs interval. The expression levels of nine genes (Soffic.07G0015370-1P, Soffic.09G0015410-2T, Soffic.09G0016460-1T, Soffic.09G0016460-1P, Soffic.09G0017080-3C, Soffic.09G0018730-3P, Soffic.09G0018730-3C, Soffic.09G0019920-3C and Soffic.03G0019710-2C) were significantly different between resistant and susceptible progenies, indicating their key roles in sugarcane resistance to SCMV and SrMV infection. The seven QTLs and nine genes can provide a certain scientific reference to help sugarcane breeders develop varieties resistant to mosaic diseases.
Collapse
Affiliation(s)
- Guilong Lu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhoutao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong-Bao Pan
- USDA-ARS, Sugarcane Research Unit, Houma, LA, United States
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Cheng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shunbin Dai
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Boyu Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Gallan DZ, Penteriche AB, Henrique MO, Silva-Filho MC. Sugarcane multitrophic interactions: Integrating belowground and aboveground organisms. Genet Mol Biol 2022; 46:e20220163. [PMID: 36512714 DOI: 10.1590/1678-4685-gmb-2022-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
Sugarcane is a crop of major importance used mainly for sugar and biofuel production, and many additional applications of its byproducts are being developed. Sugarcane cultivation is plagued by many insect pests and pathogens that reduce sugarcane yields overall. Recently emerging studies have shown complex multitrophic interactions in cultivated areas, such as the induction of sugarcane defense-related proteins by insect herbivory that function against fungal pathogens that commonly appear after mechanical damage. Fungi and viruses infecting sugarcane also modulate insect behavior, for example, by causing changes in volatile compounds responsible for insect attraction or repelling natural vector enemies via a mechanism that increases pathogen dissemination from infected plants to healthy ones. Interestingly, the fungus Fusarium verticillioides is capable of being vertically transmitted to insect offspring, ensuring its persistence in the field. Understanding multitrophic complexes is important to develop better strategies for controlling pathosystems affecting sugarcane and other important crops and highlights the importance of not only studying binary interactions but also adding as many variables as possible to effectively translate laboratory research to real-life conditions.
Collapse
Affiliation(s)
- Diego Z Gallan
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Augusto B Penteriche
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Maressa O Henrique
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Genética, Piracicaba, SP, Brazil
| |
Collapse
|
12
|
Balan S, Nithya K, Cherian KA, Viswanathan R. True Seed Transmission of Sugarcane bacilliform virus (SCBV) in Sugarcane. SUGAR TECH 2022; 24:513-521. [DOI: 10.1007/s12355-021-01031-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/27/2021] [Indexed: 02/05/2023]
|
13
|
Bagyalakshmi K, Viswanathan R. Development of a Scoring System for Sugarcane Mosaic Disease and Genotyping of Sugarcane Germplasm for Mosaic Viruses. SUGAR TECH 2021; 23:1105-1117. [DOI: 10.1007/s12355-021-00995-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/28/2021] [Indexed: 02/05/2023]
|
14
|
Lu G, Wang Z, Xu F, Pan YB, Grisham MP, Xu L. Sugarcane Mosaic Disease: Characteristics, Identification and Control. Microorganisms 2021; 9:microorganisms9091984. [PMID: 34576879 PMCID: PMC8468687 DOI: 10.3390/microorganisms9091984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023] Open
Abstract
Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a significant decrease in cane yield and sucrose content, and thus serious economic losses. This review covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane mosaic disease and its epidemic characteristics; second, the pathogenicity and genetic diversity of the three viruses; third, the identification methods of mosaic and its pathogen species; and fourth, the prevention and control measures for sugarcane mosaic disease and potential future research focus. The review is expected to provide scientific literature and guidance for the effective prevention and control of mosaic through resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Guilong Lu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Zhoutao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Yong-Bao Pan
- USDA-ARS, Sugarcane Research Unit, Houma, LA 70360, USA; (Y.-B.P.); (M.P.G.)
| | - Michael P. Grisham
- USDA-ARS, Sugarcane Research Unit, Houma, LA 70360, USA; (Y.-B.P.); (M.P.G.)
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
- Correspondence:
| |
Collapse
|
15
|
Viswanathan R. Impact of yellow leaf disease in sugarcane and its successful disease management to sustain crop production. INDIAN PHYTOPATHOLOGY 2021; 74:573-586. [DOI: 10.1007/s42360-021-00391-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
|
16
|
Nithya K, VishnuVardhan J, Balasaravanan S, Vishalakshi D, Kaverinathan K, Viswanathan R. First report of Maize yellow mosaic virus (MaYMV) infecting sugarcane in India and its molecular characterization. AUSTRALASIAN PLANT PATHOLOGY 2021; 50:633-638. [DOI: 10.1007/s13313-021-00809-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023]
|
17
|
Chu N, Zhou JR, Fu HY, Huang MT, Zhang HL, Gao SJ. Global Gene Responses of Resistant and Susceptible Sugarcane Cultivars to Acidovorax avenae subsp. avenae Identified Using Comparative Transcriptome Analysis. Microorganisms 2019; 8:microorganisms8010010. [PMID: 31861562 PMCID: PMC7022508 DOI: 10.3390/microorganisms8010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022] Open
Abstract
Red stripe disease in sugarcane caused by Acidovorax avenae subsp. avenae (Aaa) is related to serious global losses in yield. However, the underlying molecular mechanisms associated with responses of sugarcane plants to infection by this pathogen remain largely unknown. Here, we used Illumina RNA-sequencing (RNA-seq) to perform large-scale transcriptome sequencing of two sugarcane cultivars to contrast gene expression patterns of plants between Aaa and mock inoculations, and identify key genes and pathways involved in sugarcane defense responses to Aaa infection. At 0–72 hours post-inoculation (hpi) of the red stripe disease-resistant cultivar ROC22, a total of 18,689 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples. Of these, 8498 and 10,196 genes were up- and downregulated, respectively. In MT11-610, which is susceptible to red stripe disease, 15,782 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples and 8807 and 6984 genes were up- and downregulated, respectively. The genes that were differentially expressed following Aaa inoculation were mainly involved in photosynthesis and carbon metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, and plant–pathogen interaction pathways. Further, qRT-PCR and RNA-seq used for additional validation of 12 differentially expressed genes (DEGs) showed that eight genes in particular were highly expressed in ROC22. These eight genes participated in the biosynthesis of lignin and coumarin, as well as signal transduction by salicylic acid, jasmonic acid, ethylene, and mitogen-activated protein kinase (MAPK), suggesting that they play essential roles in sugarcane resistance to Aaa. Collectively, our results characterized the sugarcane transcriptome during early infection with Aaa, thereby providing insights into the molecular mechanisms responsible for bacterial tolerance.
Collapse
|