1
|
Zhao C, Li X, Guo L, Gao C, Song W, Wei W, Wu J, Liu L, Chen X. Reprogramming Metabolic Flux in Escherichia Coli to Enhance Chondroitin Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307351. [PMID: 38145357 PMCID: PMC10933623 DOI: 10.1002/advs.202307351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Reprogramming metabolic flux is a promising approach for constructing efficient microbial cell factories (MCFs) to produce chemicals. However, how to boost the transmission efficiency of metabolic flux is still challenging in complex metabolic pathways. In this study, metabolic flux is systematically reprogrammed by regulating flux size, flux direction, and flux rate to build an efficient MCF for chondroitin production. The ammoniation pool for UDP-GalNAc synthesis and the carbonization pool for UDP-GlcA synthesis are first enlarged to increase flux size for providing enough precursors for chondroitin biosynthesis. Then, the ammoniation pool and the carbonization pool are rematched using molecular valves to shift flux direction from cell growth to chondroitin biosynthesis. Next, the adaptability of polymerization pool with the ammoniation and carbonization pools is fine-tuned by dynamic and static valve-based adapters to accelerate flux rate for polymerizing UDP-GalNAc and UDP-GlcA to produce chondroitin. Finally, the engineered strain E. coli F51 is able to produce 9.2 g L-1 chondroitin in a 5-L bioreactor. This strategy shown here provides a systematical approach for regulating metabolic flux in complex metabolic pathways for efficient biosynthesis of chemicals.
Collapse
Affiliation(s)
- Chunlei Zhao
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Xiaomin Li
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Liang Guo
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Cong Gao
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Wei Song
- School of Life Sciences and Health EngineeringJiangnan UniversityWuxi214122China
| | - Wanqing Wei
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Jing Wu
- School of Life Sciences and Health EngineeringJiangnan UniversityWuxi214122China
| | - Liming Liu
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| | - Xiulai Chen
- State Key Laboratory of Food Science and ResourcesJiangnan UniversityWuxi214122China
- International Joint Laboratory on Food SafetyJiangnan UniversityWuxi214122China
| |
Collapse
|
2
|
Saleh N, Mahmoud HE, Eltaher H, Helmy M, El-Khordagui L, Hussein AA. Prodigiosin-Functionalized Probiotic Ghosts as a Bioinspired Combination Against Colorectal Cancer Cells. Probiotics Antimicrob Proteins 2023; 15:1271-1286. [PMID: 36030493 PMCID: PMC10491537 DOI: 10.1007/s12602-022-09980-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 12/02/2022]
Abstract
Lactobacillus acidophilus ghosts (LAGs) with the unique safety of a probiotic, inherent tropism for colon cells, and multiple bioactivities offer promise as drug carriers for colon targeting. Our objective was to evaluate LAGs functionalized with prodigiosin (PG), apoptotic secondary bacterial metabolite, as a bioinspired formulation against colorectal cancer (CRC). LAGs were prepared by a chemical method and highly purified by density gradient centrifugation. LAGs were characterized by microscopic and staining techniques as relatively small-sized uniform vesicles (≈1.6 µm), nearly devoid of cytoplasmic and genetic materials and having a negatively charged intact envelope. PG was highly bound to LAGs envelope, generating a physiologically stable bioactive entity (PG-LAGs), as verified by multiple microscopic techniques and lack of PG release under physiological conditions. PG-LAGs were active against HCT116 CRC cells at both the cellular and molecular levels. Cell viability data highlighted the cytotoxicity of PG and LAGs and LAGs-induced enhancement of PG selectivity for HCT116 cells, anticipating dose reduction for PG and LAGs. Molecularly, expression of the apoptotic caspase 3 and P53 biomarkers in HCT116 intracellular proteins was significantly upregulated while that of the anti-apoptotic Bcl-2 (B-cell lymphoma 2) was downregulated by PG-LAGs relative to PG and 5-fluorouracil. PG-LAGs provide a novel bacteria-based combination for anticancer biomedicine.
Collapse
Affiliation(s)
- Nessrin Saleh
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda E Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda Eltaher
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Maged Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Labiba El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Shi X, Gu R, Guo Y, Xiao H, Xu K, Li Y, Li C. Capsular polysaccharide-amikacin nanoparticles for improved antibacterial and antibiofilm performance. Int J Biol Macromol 2023:125325. [PMID: 37302623 DOI: 10.1016/j.ijbiomac.2023.125325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Natural nanoscale polysaccharide and its application have attracted much attention in recent years. In this study, we report for the first time that a novel naturally occurring capsular polysaccharide (CPS-605) from Lactobacillus plantarum LCC-605, which can self-assemble into spherical nanoparticles with an average diameter of 65.7 nm. To endow CPS-605 with more functionalities, we develop amikacin-functionalized capsular polysaccharide (CPS) nanoparticles (termed CPS-AM NPs) with improved antibacterial and antibiofilm activities against both Escherichia coli and Pseudomonas aeruginosa. They also exhibit faster bactericidal activity than AM alone. The high local positive charge density of CPS-AM NPs facilitates the interaction between the NPs and bacteria, leading to extraordinary bactericidal efficiencies (99.9 % and 100 % for E. coli and P. aeruginosa, respectively, within 30 min) by damaging the cell wall. Very interestingly, CPS-AM NPs exhibit an unconventional antibacterial mechanism against P. aeruginosa, that is, they can induce plasmolysis, along with bacterial cell surface disruption, cell inclusion release and cell death. In addition, CPS-AM NPs exhibit low cytotoxicity and negligible hemolytic activity, showing excellent biocompatibility. The CPS-AM NPs provide a new strategy for the design of next-generation antimicrobial agents that can reduce the working concentration of antibiotics to fight against bacterial resistance.
Collapse
Affiliation(s)
- Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ruihan Gu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Kefei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuan Li
- College of Resource & Environment, Yunnan Agriculture University, Kunming 650201, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Meng F, Lyu Y, Zhao H, Lyu F, Bie X, Lu Y, Zhao M, Chen Y, Lu Z. LsrR-like protein responds to stress tolerance by regulating polysaccharide biosynthesis in Lactiplantibacillus plantarum. Int J Biol Macromol 2023; 225:1193-1203. [PMID: 36436601 DOI: 10.1016/j.ijbiomac.2022.11.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
In addition to their biological functions, polysaccharides assist Lactiplantibacillus plantarum in resisting harsh conditions. To enhance the polysaccharide biosynthesis and increase the survival of L. plantarum in gut environment. We analyzed the transcriptional regulators that regulated the polysaccharide biosynthesis. A new transcriptional inhibitor, LsrR (UniProtKB: Q88YH7), had been identified, which repressed polysaccharide synthesis by binding to the polysaccharide synthesis promoter cps4A-J (Pcps4A-J). The EPSs and CPSs production of L. plantarum 163 was reduced by 42 % and 36 % (p < 0.05), respectively, when lsrR was overexpressed. Furthermore, alkaline shock proteins Asp2 and Asp1, heat shock protein Hsp3, and an autoinducer-2 (AI-2) related quorum-sensing regulator Rrp6 recovered the synthesis of polysaccharides to 50, 33, 55, and 60 %, respectively, by inhibiting the LsrR activity. This suggested that LsrR regulates polysaccharide synthesis in response to external stress signals such as pH, temperature, and AI-2 concentration. Finally, we showed that polysaccharides increased the survival rate of L. plantarum (Lp163-ΔlsrR) by 2.1 times during lyophilization and enhanced its tolerance to pH 2.0 and 0.2 % bile salts by 15.3 and 60 times due to increased capsular thickness and enhanced the autoaggregation. We provide critical data regarding Lactobacillus survival during preservative lyophilization and under gastrointestinal conditions.
Collapse
Affiliation(s)
- Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Hongyuan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Fengxia Lyu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, 3 Wenyuan Road, Xianlin University Town, Nanjing 21003, China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China.
| |
Collapse
|
5
|
Lee MG, Joeng H, Shin J, Kim S, Lee C, Song Y, Lee BH, Park HG, Lee TH, Jiang HH, Han YS, Lee BG, Lee HJ, Park MJ, Jun YJ, Park YS. Potential Probiotic Properties of Exopolysaccharide-Producing Lacticaseibacillus paracasei EPS DA-BACS and Prebiotic Activity of Its Exopolysaccharide. Microorganisms 2022; 10:2431. [PMID: 36557684 PMCID: PMC9787920 DOI: 10.3390/microorganisms10122431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Exopolysaccharide (EPS)-producing Lacticaseibacillus paracasei EPS DA-BACS was isolated from healthy human feces and its probiotic properties, as well as the structure and prebiotic activity of the EPS from this strain were examined. EPS from L. paracasei EPS DA-BACS had a ropy phenotype, which is known to have potential health benefits and is identified as loosely cell-bounded glucomannan-type EPS with a molecular size of 3.7 × 106 Da. EPS promoted the acid tolerance of L. paracasei EPS DA-BACS and provided cells with tolerance to gastrointestinal stress. The purified EPS showed growth inhibitory activity against Clostridium difficile. L. paracasei EPS DA-BACS cells completely inhibited the growth of Bacillus subtilis, Pseudomonas aeruginosa, and Aspergillus brasiliensis, as well as showed high growth inhibitory activity against Staphylococcus aureus and Escherichia coli. Treatment of lipopolysaccharide-stimulated RAW 264.7 cells with heat-killed L. paracasei EPS DA-BACS cells led to a decrease in the production of nitric oxide, indicating the anti-inflammatory activity of L. paracasei EPS DA-BACS. Purified EPS promoted the growth of Lactobacillus gasseri, Bifidobacterium bifidum, B. animalis, and B. faecale which showed high prebiotic activity. L. paracasei EPS DA-BACS harbors no antibiotic resistance genes or virulence factors. Therefore, L. paracasei EPS DA-BACS exhibits anti-inflammatory and antimicrobial activities with high gut adhesion ability and gastrointestinal tolerance and can be used as a potential probiotic.
Collapse
Affiliation(s)
- Min-Gyu Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Huijin Joeng
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jaein Shin
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Suin Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Chaeeun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Youngbo Song
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyoung-Geun Park
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin 17073, Republic of Korea
| | - Tae-Ho Lee
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin 17073, Republic of Korea
| | - Hai-Hua Jiang
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin 17073, Republic of Korea
| | - Young-Sun Han
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin 17073, Republic of Korea
| | - Bong-Gyeong Lee
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin 17073, Republic of Korea
| | - Ho-Jin Lee
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin 17073, Republic of Korea
| | - Min-Ju Park
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin 17073, Republic of Korea
| | - Yun-Ju Jun
- Research Laboratory, Dong-A Pharmaceutical Co., Ltd., Yongin 17073, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Akhtach S, Tabia Z, Bricha M, Belkhou R, Mabrouk KE. Investigation on exopolysaccharide production by Lacticaseibacillus rhamnosus P14 isolated from Moroccan raw cow's milk. J Food Sci 2021; 86:4840-4850. [PMID: 34642967 DOI: 10.1111/1750-3841.15941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022]
Abstract
Twenty-four strains were isolated from 50 samples of raw cow's milk originated from different regions of Morocco. After different screening methods, one strain was selected as the highest exopolysaccharide (EPS)-producing isolate and was identified by 16S rDNA sequencing as Lacticaseibacillus rhamnosus P14. Moreover, the EPS-producing ability, bacterial growth, and pH of the medium were monitored. The optimization of culture conditions indicated that the high yield of EPS was 685.14 mg/L obtained at 42°C, with lactose as a carbon source. The characterization study showed that the purified EPS consisted of one main fraction that contained 97.67% of carbohydrates. Furthermore, the EPS was identified as a homogeneous polysaccharide, mainly composed of glucose. These results demonstrated the high EPS production ability of the selected L. rhamnosus P14, representing a promising candidate to improve the textural and sensory properties of fermented food.
Collapse
Affiliation(s)
- Sihame Akhtach
- Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco.,Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), High School of Technology, Sidi Mohamed Ben Abdallah University, Atlas Fez, Morocco
| | - Zakaria Tabia
- Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco
| | - Meriem Bricha
- Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco
| | - Rajae Belkhou
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), High School of Technology, Sidi Mohamed Ben Abdallah University, Atlas Fez, Morocco
| | - Khalil El Mabrouk
- Euromed Research Center, Euromed University of Fez, Eco-Campus, Fez, Morocco
| |
Collapse
|
7
|
Ericksen B. Quantification of polysaccharides fixed to Gram stained slides using lactophenol cotton blue and digital image processing. F1000Res 2015; 4:1. [PMID: 29333228 PMCID: PMC5754746 DOI: 10.12688/f1000research.5779.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 01/10/2023] Open
Abstract
Dark blue rings and circles emerged when the non-specific polysaccharide stain lactophenol cotton blue was added to Gram stained slides. The dark blue staining is attributable to the presence of capsular polysaccharides and bacterial slime associated with clumps of Gram-negative bacteria. Since all bacterial cells are glycosylated and concentrate polysaccharides from the media, the majority of cells stain light blue. The contrast between dark and light staining is sufficient to enable a digital image processing thresholding technique to be quantitative with little background noise. Prior to the addition of lactophenol cotton blue, the Gram-stained slides appeared unremarkable, lacking ubiquitous clumps or stained polysaccharides. Adding lactophenol cotton blue to Gram stained slides is a quick and inexpensive way to screen cell cultures for bacterial slime, clumps and biofilms that are invisible using the Gram stain alone.
Collapse
Affiliation(s)
- Bryan Ericksen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
8
|
Ericksen B. Quantification of polysaccharides fixed to Gram stained slides using lactophenol cotton blue and digital image processing. F1000Res 2015; 4:1. [PMID: 29333228 PMCID: PMC5754746 DOI: 10.12688/f1000research.5779.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 01/27/2025] Open
Abstract
Dark blue rings and circles emerged when the non-specific polysaccharide stain lactophenol cotton blue was added to Gram stained slides. The dark blue staining is attributable to the presence of capsular polysaccharides and bacterial slime associated with clumps of Gram-negative bacteria. Since all bacterial cells are glycosylated and concentrate polysaccharides from the media, the majority of cells stain light blue. The contrast between dark and light staining is sufficient to enable a digital image processing thresholding technique to be quantitative with little background noise. Prior to the addition of lactophenol cotton blue, the Gram-stained slides appeared unremarkable, lacking ubiquitous clumps or stained polysaccharides. Adding lactophenol cotton blue to Gram stained slides is a quick and inexpensive way to screen cell cultures for bacterial slime, clumps and biofilms that are invisible using the Gram stain alone.
Collapse
Affiliation(s)
- Bryan Ericksen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|