1
|
Chen WH, Hsu CC, Huang HY, Cherng JY, Hsiao YC. Optimizing Gluten Extraction Using Eco-friendly Imidazolium-Based Ionic Liquids: Exploring the Impact of Cation Side Chains and Anions. ACS OMEGA 2024; 9:17028-17035. [PMID: 38645333 PMCID: PMC11025095 DOI: 10.1021/acsomega.3c08683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Gluten is a well-known food allergen globally, and it can induce immune responses in celiac- and nonceliac gluten-sensitive patients. The gliadin proteins from gluten have a special amino acid sequence that make it hydrophobic. One way to deal with gluten allergies is to provide a gluten-free diet. The hydrophobic characteristic of gliadin makes gliadin detection more difficult. An analyst needs to use an organic solvent or multiple processes to denature gluten for extraction. Although organic solvents can rapidly extract gluten in a sample, organic solvent also denatures the antibody and induces false biotest results without buffer dilute, and the accuracy will reduce with buffer dilute. An ionic liquid (IL) is a highly modifiable green chemical organic salt. The imidazolium has a cationic structure and is modified with different lengths (C = 0, 1, 3, 5, 7, 9, and 12) of carbon side chains with organic and inorganic anions [methanesulfonate (MSO), Cl-, F-, NO3-, HSO4-, and H2PO4-] to make different kinds of ILs for testing the solubility of gliadin. Different IL/water ratios were used to test the solubility of gluten. We measured the solubility of gliadin in different imidazolium ILs, and the kinetic curve of gliadin dissolved in 1% [C5DMIM][MSO]aq was conducted. We also used circular dichroism spectroscopy and an enzyme-linked immunosorbent assay to measure the gliadin structure and the effect of binding with an antibody after 1% [C5DMIM][MSO]aq treatment. An 2,3-bis-(2-methoxy-4- nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay was used to test the toxicity of [C5DMIM][MSO]aq in N2a cells. In our research, 1% [C5DMIM][MSO]aq produced a good solubility of gluten, and it could dissolve more than 3000 ppm of gluten in 5 min. [C5DMIM][MSO]aq did not break down the gluten structure and did not restrict antibody binding to gluten, and more importantly, [C5DMIM][MSO] did not exhibit cell toxicity. In this report, we showed that [C5DMIM][MSO] could be a good extraction solution applied for gluten detection.
Collapse
Affiliation(s)
- Wen-Hao Chen
- Research
and Development Group, Yen Hao Holding Company, Tainan 11031, Taiwan
- Graduate
Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chuan-Chih Hsu
- Division
of Cardiovascular Surgery, Department of Surgery, School of Medicine,
College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
- Division
of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, 250 Wuxing Street, Tai-pei 11031, Taiwan
| | - Hui-Yin Huang
- Research
and Development Group, Yen Hao Holding Company, Tainan 11031, Taiwan
| | - Jong-Yuh Cherng
- Department
of Chemistry and Biochemistry, National
Chung Cheng University, Chia-yi 62102, Taiwan
| | - Yu-Cheng Hsiao
- Research
and Development Group, Yen Hao Holding Company, Tainan 11031, Taiwan
- Graduate
Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Stanford
Byers Center for Biodesign, Stanford, California 94305, United States
- Cell
Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
2
|
Jaglan A, Sadera G, Singh P, Singh BP, Goel G. Probiotic potential of gluten degrading Bacillus tequilensis AJG23 isolated from Indian traditional cereal-fermented foods as determined by Multiple Attribute Decision-Making analysis. Food Res Int 2023; 174:113516. [PMID: 37986423 DOI: 10.1016/j.foodres.2023.113516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
The present study reported the characterization of gluten hydrolyzing strains of Bacillus sp. from fermented cereal dough. The strains were characterized for probiotic as well as technological attributes. A total of 45 presumptive gluten degrading isolates were obtained on gliadin agar plate assay. Based on hemolytic and antibiotic susceptibility pattern, only six isolates were considered safe which also indicated gliadinase activity on zymography. All the six strains were able to resist the pH 2.0, 0.25% bile and also possessed ability to adhere to the organic solvents and mucin. The cell free supernatant of five strains exhibited antimicrobial activities against Gram-positive and Gram-negative pathogens. A more than 50% survival of the isolated strains was obtained at a salt concentration of 2%, phenol concentration of 0.1% and temperature upto 45 °C. All the strains exhibited antioxidant activities and biofilm forming ability. Furthermore, the ranking of strains based on probiotic as well as other functional attributes was determined using multidimensional Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). A matrix of multidimensional indicators was prepared using alternatives and criteria, the analysis indicated the strain Bacillus tequilensis AJG23 as the potential probiotic candidate based on all screening criteria. Further work still needs to be done about the protective role of the potential strain against gluten sensitivity using in vitro models.
Collapse
Affiliation(s)
- Anjali Jaglan
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Gunjan Sadera
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Phool Singh
- School of Engineering and Technology, Central University of Haryana, Mahendergarh 123031, India
| | - Brij Pal Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India
| | - Gunjan Goel
- Department of Microbiology, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
3
|
Characterization of the recombinant PepX peptidase from Lactobacillus fermentum and its effect on gliadin protein hydrolysis in vitro. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Screening of Spore-Forming Bacteria with Probiotic Potential in Pristine Algerian Caves. Microbiol Spectr 2022; 10:e0024822. [PMID: 36214685 PMCID: PMC9604054 DOI: 10.1128/spectrum.00248-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interest and exploration of biodiversity in subsurface ecosystems have increased significantly during the last 2 decades. The aim of this study was to investigate the in vitro probiotic properties of spore-forming bacteria isolated from deep caves. Two hundred fifty spore-forming microbes were enriched from sediment samples from 10 different pristine caves in Algeria at different depths. Isolates showing nonpathogenic profiles were screened for their potential to produce digestive enzymes (gliadinase and beta-galactosidase) in solid and liquid media, respectively. Different probiotic potentialities were studied, including (i) growth at 37°C, (ii) survival in simulated gastric juice, (iii) survival in simulated intestinal fluid, and (iv) antibiotic sensitivity and cell surface properties. The results showed that out of 250 isolates, 13 isolates demonstrated nonpathogenic character, probiotic potentialities, and ability to hydrolyze gliadin and lactose in solution. These findings suggest that a selection of cave microbes might serve as a source of interesting candidates for probiotics. IMPORTANCE Previous microbial studies of subsurface ecosystems like caves focused mainly on the natural biodiversity in these systems. So far, only a few studies focused on the biotechnological potential of microbes in these systems, focusing in particular on their antibacterial potential, antibiotic production, and, to some extent, enzymatic potential. This study explores whether subsurface ecosystems can serve as an alternative source for microbes relevant to probiotics. The research focused on the ability of cave microbes to degrade two substrates (lactose and gliadin) that cause common digestive disorders. Since these enzymes may prove to be useful in food processing and in reducing the effect of lactose and gliadin digestion within intolerant patients, isolation of microbes such as in this study may expand the possibilities of developing alternative strategies to deal with these intolerances.
Collapse
|
5
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022; 23:ijms231911748. [PMID: 36233048 PMCID: PMC9569549 DOI: 10.3390/ijms231911748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients’ quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of “biotics” strategies, from probiotics to the less explored “viromebiotics” as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K. Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V. Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I. Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| |
Collapse
|
6
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022. [PMID: 36233048 DOI: 10.3390/ijms231911748.pmid:36233048;pmcid:pmc9569549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients' quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of "biotics" strategies, from probiotics to the less explored "viromebiotics" as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Characterization of Bacillus cereus AFA01 Capable of Degrading Gluten and Celiac-Immunotoxic Peptides. Foods 2021; 10:foods10081725. [PMID: 34441503 PMCID: PMC8392533 DOI: 10.3390/foods10081725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Wheat gluten elicits a pro-inflammatory immune response in patients with celiac disease. The only effective therapy for this disease is a life-long gluten-free diet. Gluten detoxification using glutenases is an alternative approach. A key step is to identify useful glutenases or glutenase-producing organisms. This study investigated the gluten-degrading activity of three Bacillus cereus strains using gluten, gliadin, and highly immunotoxic 33- and 13-mer gliadin peptides. The strain AFA01 was grown on four culture media for obtaining the optimum gluten degradation. Complete genome sequencing was performed to predict genes of enzymes with potential glutenase activity. The results showed that the three B. cereus strains can hydrolyze gluten, immunotoxic peptides, and gliadin even at pH 2.0. AFA01 was the most effective strain in degrading the 33-mer peptide into fractions containing less than nine amino acid residues, the minimum peptide to induce celiac responses. Moreover, growth on starch casein broth promoted AFA01 to degrade immunotoxic peptides. PepP, PepX, and PepI may be responsible for the hydrolysis of immunotoxic peptides. On the basis of the potential of gluten degradation, AFA01 or its derived enzymes may be the best option for further research regarding the elimination of gluten toxicity.
Collapse
|
8
|
Segura V, Ruiz-Carnicer Á, Sousa C, Moreno MDL. New Insights into Non-Dietary Treatment in Celiac Disease: Emerging Therapeutic Options. Nutrients 2021; 13:2146. [PMID: 34201435 PMCID: PMC8308370 DOI: 10.3390/nu13072146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
To date, the only treatment for celiac disease (CD) consists of a strict lifelong gluten-free diet (GFD), which has numerous limitations in patients with CD. For this reason, dietary transgressions are frequent, implying intestinal damage and possible long-term complications. There is an unquestionable need for non-dietary alternatives to avoid damage by involuntary contamination or voluntary dietary transgressions. In recent years, different therapies and treatments for CD have been developed and studied based on the degradation of gluten in the intestinal lumen, regulation of the immune response, modulation of intestinal permeability, and induction of immunological tolerance. In this review, therapeutic lines for CD are evaluated with special emphasis on phase III and II clinical trials, some of which have promising results.
Collapse
Affiliation(s)
| | | | | | - María de Lourdes Moreno
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (V.S.); (Á.R.-C.); (C.S.)
| |
Collapse
|