1
|
Erriah P, Puan SL, Yahaya NM, Wan Ahmad Kamil WNI, Amin Nordin S, Muhamad A, Sabri S. Harnessing bacterial antimicrobial peptides: a comprehensive review on properties, mechanisms, applications, and challenges in combating antimicrobial resistance. J Appl Microbiol 2025; 136:lxae290. [PMID: 40036746 DOI: 10.1093/jambio/lxae290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 03/06/2025]
Abstract
Antimicrobial resistance (AMR) is a significant global health concern due to the persistence of pathogens and the emergence of resistance in bacterial infections. Bacterial-derived antimicrobial peptides (BAMPs) have emerged as a promising strategy to combat these challenges. Known for their diversity and multifaceted nature, BAMPs are notable bioactive agents that exhibit potent antimicrobial activities against various pathogens. This review explores the intricate properties and underlying mechanisms of BAMPs, emphasizing their diverse applications in addressing AMR. Additionally, the review investigates the mechanisms, analyses the challenges in utilizing BAMPs effectively, and examines their potential applications and associated deployment challenges providing comprehensive insights into how BAMPs can be harnessed to combat AMR across different domains. The significance of this review lies in highlighting the potential of BAMPs as transformative agents in combating AMR, offering sustainable and eco-friendly solutions to this pressing global health challenge.
Collapse
Affiliation(s)
- Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Azira Muhamad
- National Institutes of Biotechnology Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Kalairaj A, Rajendran S, Karthikeyan R, Panda RC, Senthilvelan T. A Comprehensive Review on Preparation of Silver Nanoparticles from a Bacteriocin for the Natural Preservation of Food Products. Appl Biochem Biotechnol 2025; 197:1419-1452. [PMID: 39621224 DOI: 10.1007/s12010-024-05122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 03/29/2025]
Abstract
Food preservation aims to maintain safe and nutritious food for extended periods by inhibiting microbial growth that causes spoilage and poses health risks. Traditional chemical preservatives like sodium sulfite, sodium nitrite, sodium benzoate, tBHQ and BHA have raised concerns due to potential carcinogenicity, genotoxicity and allergies with long-term consumption. As a natural alternative, bacteriocins have emerged for food preservation. These ribosomally synthesised antimicrobial peptides are produced by various microorganisms, including bacteria, fungi and yeast, typically during their stationary growth phase. Bacteriocins are categorised into four classes based on structure and function, with molecular weights averaging between 30 and 80 kDa. They exhibit antimicrobial activity against a range of bacteria, mediating complex interactions between bacterial species and enhancing competitiveness and survival of producer strains. Both gram-positive and gram-negative bacteria produce bacteriocins. Recent advancements have identified and optimized bacteriocins for applications in food technology, extending shelf life, managing foodborne illnesses and contributing to public health preservation. Their eco-friendly nature and safety profile make bacteriocins promising for future food preservation strategies without detrimental effects on humans or animals. The current review has mainly focused on the preservation of food products using bacteriocin.
Collapse
Affiliation(s)
- Ashmitha Kalairaj
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Swethashree Rajendran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - R Karthikeyan
- Central Instrumentation Laboratory, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Thanjavur (an Institute of National Importance, Formerly Indian Institute of Food Processing Technology (IIFPT)), Ministry of Food Processing Industries (MoFPI), Government of India, Pudukkottai Road, Thanjavur, 613005, Tamil Nadu, India
| | - Rames C Panda
- Chemical Engineering Division, Rajalakshmi Engineering College, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - T Senthilvelan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
3
|
Imade EE, Omonigho SE, Babalola OO, Enagbonma BJ. Lactic acid bacterial bacteriocins and their bioactive properties against food-associated antibiotic-resistant bacteria. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01652-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Incidence of foodborne diseases and growing resistance of pathogens to classical antibiotics is a major concern in the food industry. Consequently, there is increasing demand for safe foods with fewer chemical additives but natural products which are not harmful to the consumers. Bacteriocins, produced by lactic acid bacteria (LAB), is of interest because they are active in a nanomolar range, do not have toxic effects, and are readily available in fermented food products.
Methods
In this research, LAB were isolated from fufu, gari, kunu, nono, and ogi using De Mann, Rogosa, and Sharpe agar. Cell-free supernatants were prepared from 18-24 h LAB culture grown on MRS broth. Effect of organic acid was eliminated by adjusting the pH of the supernatants to 7.0 with 1M NaOH while the effect of hydrogen peroxide was eliminated by treating with Catalase enzyme. The supernatant was then filter-sterilized using a membrane filtration unit with a 0.2-μm pore size millipore filter and subjected to agar well diffusion assay against foodborne antibiotic-resistant bacteria.
Result
A total of 162 isolates were obtained from the food samples. The antimicrobial sensitivity test yielded positive results for 45 LAB isolates against Staphylococcus aureus ATCC 25923 while 52 LAB isolates inhibited Escherichia coli ATCC 25922. On confirmation of the bacteriocinogenic nature of the inhibitory substance, 4 of the LAB isolates displayed a remarkable degree of inhibition to Leuconostoc mesenteroides, Salmonella typhimurium, and Bacillus cereus. Agar well diffusion assay was also performed against antibiotic-resistant foodborne pathogens using the cell-free supernatant (CFS) obtained from Lactobacillus fermentum strain NBRC15885 (Limosilactobacillus fermentum), Lactobacillus fermentum strain CIP102980 (Limosilactobacillus fermentum), Lactobacillus plantarum strain JCM1149 (Lactiplantibacillus garii), and Lactobacillus natensis strain LP33 (Companilactobacillus nantensis). The foodborne pathogens exhibited a notable level of resistance to antibiotics, with B. cereus exhibiting a resistance profile of 40%, S. aureus (50%), K. pnuemoniae (70%), E. coli (60%), and S. typhi (40%). The (CFS) was able to inhibit the growth of B. cereus, Klebsiella pneumonia, S. typhimurium, S. aureus, and E. coli.
Conclusion
Therefore, it portends that the bacteriocins produced by the LAB isolated from these food products could act as probiotics for effective inhibition of the growth of antibiotic-resistant foodborne pathogens.
Collapse
|
4
|
Choeisoongnern T, Sirilun S, Waditee-Sirisattha R, Pintha K, Peerajan S, Chaiyasut C. Potential Probiotic Enterococcus faecium OV3-6 and Its Bioactive Peptide as Alternative Bio-Preservation. Foods 2021; 10:foods10102264. [PMID: 34681312 PMCID: PMC8534580 DOI: 10.3390/foods10102264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Probiotic Enterococcus faecium OV3-6 and its secreted active peptide were characterized and investigated. The strain survived in simulated gastric and small intestinal conditions at 88.16% and 94.33%, respectively. The safety assessment revealed that the strain was shown α-hemolysis and susceptible to most clinically relevant antibiotics, but intermediate sensitivity to erythromycin and kanamycin was found. It does not harbor any virulence genes except for the efaAfm gene. Both of its living cells and the cell-free supernatants (CFS) of the strain significantly reduced the adhesion of E. coli and S. Typhi on Caco-2 cells. The strain can regulate the secretion of pro and inflammatory cytokines, IL-6 and IL-12 and induce the secretion of anti-inflammatory IL-10 of the Caco-2 cell. The strain can prevent the growth of Gram-positive strains belonging to the genera Bacillus, Carnobacterium, Listeria, and Staphylococcus. It also presented the entP gene that involves the production of bacteriocin named enterocin P. The antimicrobial peptide was matched 40% with 50S ribosomal proteins L29 (7.325 kDa), as revealed by LC-MS/MS. This active peptide exhibits heat stability, is stable over a wide pH range of 2−10, and maintains its activity at −20 and 4 °C for 12 weeks of storage. Altogether, E. faecium OV3-6 thus has potential for consideration as a probiotic and bio-preservative for applied use as a fermented food starter culture and in functional food or feed industries.
Collapse
Affiliation(s)
- Thiwanya Choeisoongnern
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence: (S.S.); (C.C.); Tel.: +66-5394-4375 (S.S.); +66-5394-4340 (C.C.)
| | | | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (S.S.); (C.C.); Tel.: +66-5394-4375 (S.S.); +66-5394-4340 (C.C.)
| |
Collapse
|
5
|
Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. aeruginosa? Int J Mol Sci 2021; 22:ijms22189776. [PMID: 34575940 PMCID: PMC8469417 DOI: 10.3390/ijms22189776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.
Collapse
|
6
|
Liu W, Cheng M, Li J, Zhang P, Fan H, Hu Q, Han M, Su L, He H, Tong Y, Ning K, Long Y. Classification of the Gut Microbiota of Patients in Intensive Care Units During Development of Sepsis and Septic Shock. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 18:696-707. [PMID: 33607294 PMCID: PMC8377022 DOI: 10.1016/j.gpb.2020.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
The gut microbiota of intensive care unit (ICU) patients displays extreme dysbiosis associated with increased susceptibility to organ failure, sepsis, and septic shock. However, such dysbiosis is difficult to characterize owing to the high dimensional complexity of the gut microbiota. We tested whether the concept of enterotype can be applied to the gut microbiota of ICU patients to describe the dysbiosis. We collected 131 fecal samples from 64 ICU patients diagnosed with sepsis or septic shock and performed 16S rRNA gene sequencing to dissect their gut microbiota compositions. During the development of sepsis or septic shock and during various medical treatments, the ICU patients always exhibited two dysbiotic microbiota patterns, or ICU-enterotypes, which could not be explained by host properties such as age, sex, and body mass index, or external stressors such as infection site and antibiotic use. ICU-enterotype I (ICU E1) comprised predominantly Bacteroides and an unclassified genus of Enterobacteriaceae, while ICU-enterotype II (ICU E2) comprised predominantly Enterococcus. Among more critically ill patients with Acute Physiology and Chronic Health Evaluation II (APACHE II) scores > 18, septic shock was more likely to occur with ICU E1 (P = 0.041). Additionally, ICU E1 was correlated with high serum lactate levels (P = 0.007). Therefore, different patterns of dysbiosis were correlated with different clinical outcomes, suggesting that ICU-enterotypes should be diagnosed as independent clinical indices. Thus, the microbial-based human index classifier we propose is precise and effective for timely monitoring of ICU-enterotypes of individual patients. This work is a first step toward precision medicine for septic patients based on their gut microbiota profiles.
Collapse
Affiliation(s)
- Wanglin Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing 100730, China
| | - Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinman Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Peng Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qinghe Hu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing 100730, China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing 100730, China
| | - Huaiwu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing 100730, China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
7
|
Sharma P, Kaur S, Chadha BS, Kaur R, Kaur M, Kaur S. Anticancer and antimicrobial potential of enterocin 12a from Enterococcus faecium. BMC Microbiol 2021; 21:39. [PMID: 33541292 PMCID: PMC7860584 DOI: 10.1186/s12866-021-02086-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increase in the number of infections caused by Gram-negative bacteria in neutropenic cancer patients has prompted the search for novel therapeutic agents having dual anticancer and antimicrobial properties. Bacteriocins are cationic proteins of prokaryotic origin that have emerged as one of the most promising alternative antimicrobial agents with applications as food preservatives and therapeutic agents. Apart from their antimicrobial activities, bacteriocins are also being explored for their anticancer potential. RESULTS In this study, a broad-spectrum, cell membrane-permeabilizing enterocin with a molecular weight of 65 kDa was purified and characterized from the culture supernatant of vaginal Enterococcus faecium 12a. Enterocin 12a inhibited multidrug-resistant strains of various Gram-negative pathogens such as Salmonella enterica, Shigella flexneri, Vibrio cholerae, Escherichia coli and Gram-positive, Listeria monocytogenes, but had no activities against different strains of gut lactobacilli. The mass spectrometric analysis showed that the enterocin 12a shared partial homology with 4Fe-4S domain-containing redox protein of E. faecalis R712. Further, enterocin 12a selectively inhibited the proliferation of various human cancer cell lines in a dose-dependent manner but not that of normal human peripheral blood mononuclear cells. Enterocin 12a-treated cancer cells showed apoptosis-like morphological changes. CONCLUSION Enterocin 12a is a novel bacteriocin that has anticancer properties against human cell lines and negligible activity towards non-malignant cells. Therefore, it should be further evaluated for its anticancer potential in animal models.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sumanpreet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | | - Raminderjit Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
8
|
Zhu Y, Zhang S. Antibacterial Activity and Mechanism of Lacidophilin From Lactobacillus pentosus Against Staphylococcus aureus and Escherichia coli. Front Microbiol 2020; 11:582349. [PMID: 33193219 PMCID: PMC7658196 DOI: 10.3389/fmicb.2020.582349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
The main purpose of this study was to explore the antibacterial activity and mechanism of lacidophilin from Lactobacillus pentosus against Staphylococcus aureus and Escherichia coli. The effects of temperature, enzyme, metal ions, and pH on the antibacterial activity of L. pentosus were evaluated. The result showed that lacidophilin had good thermal stability and could be decomposed by trypsin completely. The antibacterial ability was affected by high concentration of metal ions, and the best antibacterial ability was acquired under acidic conditions. The antibacterial mechanism of lacidophilin was explored through studying cytomembrane injury, phosphorus metabolism, protein changes, and oxidative stress response of the indicator bacteria. It was shown that lacidophilin destroyed the cytomembrane of the bacteria and increased the cytomembrane permeability, which resulted in the leak of proteins, nucleic acids, and electrolytes. In addition, it further restrained phosphorus metabolism, caused changes of some protein contents, and increased cytomembrane lipid peroxidation and cell oxidative damage. All these might inhibit the growth of bacteria and even cause their death. This study identified a natural biological preservative with strong antibacterial activity against both Gram-positive and Gram-negative foodborne pathogens. The high antibacterial activity against the two types of bacteria reflected its potential in food preservation used as a natural food preservative.
Collapse
|
9
|
Collado MC, Vinderola G, Salminen S. Postbiotics: facts and open questions. A position paper on the need for a consensus definition. Benef Microbes 2019; 10:711-719. [PMID: 31965850 DOI: 10.3920/bm2019.0015] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The past definitions of probiotics and prebiotics have been reviewed and updated recently. According to these concepts, probiotics comprise live microorganisms that confer a health benefit on the host when administered in adequate amounts, whereas a prebiotic is a substrate that is selectively utilised by host microorganisms, conferring a health benefit. The words probiotics and prebiotics can be found on labels of many foods and supplements. Consumers have a growing awareness of these terms' meanings, and many countries are increasingly using them for regulation purposes. At the same time, there is increasing evidence on the health effects of non-viable microorganisms and the metabolites that they can produce by fermentation or by their action on food components. Different terms have been used in the literature to refer to these bioactive compounds, which do not fall under the known categories of probiotics, prebiotics or synbiotics. The tentative term postbiotics has been the most used one so far. However, no definition of the term has gained international consensus to date. This work aims to provide information on the facts and the open questions about the so-called postbiotics.
Collapse
Affiliation(s)
- M C Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 Valencia, Spain.,Functional Foods Forum, Faculty of Medicine, University of Turku, Turun Yliopisto, Turku 20014, Finland
| | - G Vinderola
- Instituto de Lactología Industrial (INLAIN, UNL-CONICET), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - S Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turun Yliopisto, Turku 20014, Finland
| |
Collapse
|
10
|
Rogozhin EA, Sadykova VS, Baranova AA, Vasilchenko AS, Lushpa VA, Mineev KS, Georgieva ML, Kul'ko AB, Krasheninnikov ME, Lyundup AV, Vasilchenko AV, Andreev YA. A Novel Lipopeptaibol Emericellipsin A with Antimicrobial and Antitumor Activity Produced by the Extremophilic Fungus Emericellopsis alkalina. Molecules 2018; 23:molecules23112785. [PMID: 30373232 PMCID: PMC6278523 DOI: 10.3390/molecules23112785] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/21/2023] Open
Abstract
Soil fungi are known to contain a rich variety of defense metabolites that allow them to compete with other organisms (fungi, bacteria, nematodes, and insects) and help them occupy more preferential areas at the expense of effective antagonism. These compounds possess antibiotic activity towards a wide range of other microbes, particularly fungi that belong to different taxonomical units. These compounds include peptaibols, which are non-ribosomal synthesized polypeptides containing non-standard amino acid residues (alpha-aminoisobutyric acid mandatory) and some posttranslational modifications. We isolated a novel antibiotic peptide from the culture medium of Emericellopsis alkalina, an alkalophilic strain. This peptide, called emericellipsin A, exhibited a strong antifungal effect against the yeast Candida albicans, the mold fungus Aspergillus niger, and human pathogen clinical isolates. It also exhibited antimicrobial activity against some Gram-positive and Gram-negative bacteria. Additionally, emericellipsin A showed a significant cytotoxic effect and was highly active against Hep G2 and HeLa tumor cell lines. We used NMR spectroscopy to reveal that this peptaibol is nine amino acid residues long and contains non-standard amino acids. The mode of molecular action of emericellipsin A is most likely associated with its effects on the membranes of cells. Emericellipsin A is rather short peptaibol and could be useful for the development of antifungal, antibacterial, or anti-tumor remedies.
Collapse
Affiliation(s)
- Eugene A Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia.
| | - Vera S Sadykova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia.
| | - Anna A Baranova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia.
| | | | - Vladislav A Lushpa
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
- Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudnyi 141701, Russia.
| | - Konstantin S Mineev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
- Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudnyi 141701, Russia.
| | - Marina L Georgieva
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia.
- Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia.
| | - Alexander B Kul'ko
- Moscow Government Health Department Scientific and Clinical Antituberculosis Center, ul. Stromynka, 10, Moscow 107014, Russia.
| | - Mikhail E Krasheninnikov
- Institute of Molecular Medicine, Advanced Cell Technologies Department, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Trubetskaya St. 8, Bldg. 2, Moscow 119991, Russia.
| | - Alexey V Lyundup
- Institute of Molecular Medicine, Advanced Cell Technologies Department, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Trubetskaya St. 8, Bldg. 2, Moscow 119991, Russia.
| | | | - Yaroslav A Andreev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
- Institute of Molecular Medicine, Advanced Cell Technologies Department, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Trubetskaya St. 8, Bldg. 2, Moscow 119991, Russia.
| |
Collapse
|
11
|
Ringot-Destrez B, D'Alessandro Z, Lacroix JM, Mercier-Bonin M, Léonard R, Robbe-Masselot C. A Sensitive and Rapid Method to Determin the Adhesion Capacity of Probiotics and Pathogenic Microorganisms to Human Gastrointestinal Mucins. Microorganisms 2018; 6:E49. [PMID: 29844291 PMCID: PMC6027390 DOI: 10.3390/microorganisms6020049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
Mucus is the habitat for the microorganisms, bacteria and yeast that form the commensal flora. Mucins, the main macromolecules of mucus, and more specifically, the glycans that cover them, play essential roles in microbial gastrointestinal colonization. Probiotics and pathogens must also colonize mucus to have lasting positive or deleterious effects. The question of which mucin-harboured glycan motifs favour the adhesion of specific microorganisms remains very poorly studied. In the current study, a simple test based on the detection of fluorescent-labeled microorganisms raised against microgram amounts of mucins spotted on nitrocellulose was developed. The adhesion of various probiotic, commensal and pathogenic microorganisms was evaluated on a panel of human purified gastrointestinal mucins and compared with that of commercially available pig gastric mucins (PGM) and of mucins secreted by the colonic cancer cell line HT29-MTX. The latter two proved to be very poor indicators of adhesion capacity on intestinal mucins. Our results show that the nature of the sialylated cores of O-glycans, determined by MALDI MS-MS analysis, potentially enables sialic acid residues to modulate the adhesion of microorganisms either positively or negatively. Other identified factors affecting the adhesion propensity were O-glycan core types and the presence of blood group motifs. This test should help to select probiotics with enhanced adhesion capabilities as well as deciphering the role of specific mucin glycotopes on microbial adhesion.
Collapse
Affiliation(s)
- Bélinda Ringot-Destrez
- Univ.lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France.
| | - Zéa D'Alessandro
- Univ.lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France.
| | - Jean-Marie Lacroix
- Univ.lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France.
| | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31000 Toulouse, France.
| | - Renaud Léonard
- Univ.lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France.
| | - Catherine Robbe-Masselot
- Univ.lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France.
- Unité de Glycobiologie Structurale et Fonctionnelle, Campus CNRS de la Haute Borne, 50 avenue de Halley, 59658 Villeneuve d'Ascq, France.
| |
Collapse
|