1
|
Deng M, Zhang S, Wu S, Jiang Q, Teng W, Luo T, Ouyang Y, Liu J, Gu B. Lactiplantibacillus plantarum N4 ameliorates lipid metabolism and gut microbiota structure in high fat diet-fed rats. Front Microbiol 2024; 15:1390293. [PMID: 38912346 PMCID: PMC11190066 DOI: 10.3389/fmicb.2024.1390293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Lowing blood lipid levels with probiotics has good application prospects. This study aimed to isolate probiotics with hypolipidemic efficacy from homemade na dish and investigate their mechanism of action. In vitro experiments were conducted to determine the cholesterol-lowering ability of five isolates, with results showing that Lactiplantibacillus plantarum N4 exhibited a high cholesterol-lowering rate of 50.27% and significant resistance to acid (87%), bile salt (51.97%), and pepsin (88.28%) in simulated gastrointestinal fluids, indicating promising application prospects for the use of probiotics in lowering blood lipids. The findings from the in vivo experiment demonstrated that the administration of N4 effectively attenuated lipid droplet accumulation and inflammatory cell infiltration in the body weight and liver of hyperlipidemic rats, leading to restoration of liver tissue morphology and structure, as well as improvement in lipid and liver biochemical parameters. 16S analysis indicated that the oral administration of N4 led to significant alterations in the relative abundance of various genera, including Sutterella, Bacteroides, Clostridium, and Ruminococcus, in the gut microbiota of hyperlipidemia rats. Additionally, fecal metabolomic analysis identified a total of 78 metabolites following N4 intervention, with carboxylic acids and their derivatives being the predominant compounds detected. The transcriptomic analysis revealed 156 genes with differential expression following N4 intervention, leading to the identification of 171 metabolic pathways through Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Notably, the glutathione metabolism pathway, PPAR signaling pathway, and bile secretion pathway emerged as the primary enrichment pathways. The findings from a comprehensive multi-omics analysis indicate that N4 influences lipid metabolism and diminishes lipid levels in hyperlipidemic rats through modulation of fumaric acid and γ-aminobutyric acid concentrations, as well as glutathione and other metabolic pathways in the intestinal tract, derived from both the gut microbiota and the host liver. This research offers valuable insights into the therapeutic potential of probiotics for managing lipid metabolism disorders and their utilization in the development of functional foods.
Collapse
Affiliation(s)
- Manqi Deng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Shuaiying Zhang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Siying Wu
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qiunan Jiang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wenyao Teng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Tao Luo
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yerui Ouyang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiantao Liu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bing Gu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
2
|
de Luna Freire MO, Cruz Neto JPR, de Albuquerque Lemos DE, de Albuquerque TMR, Garcia EF, de Souza EL, de Brito Alves JL. Limosilactobacillus fermentum Strains as Novel Probiotic Candidates to Promote Host Health Benefits and Development of Biotherapeutics: A Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10235-1. [PMID: 38393628 DOI: 10.1007/s12602-024-10235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Fruits and their processing by-products are sources of potentially probiotic strains. Limosilactobacillus (L.) fermentum strains isolated from fruit processing by-products have shown probiotic-related properties. This review presents and discusses the results of the available studies that evaluated the probiotic properties of L. fermentum in promoting host health benefits, their application by the food industry, and the development of biotherapeutics. The results showed that administration of L. fermentum for 4 to 8 weeks promoted host health benefits in rats, including the modulation of gut microbiota, improvement of metabolic parameters, and antihypertensive, antioxidant, and anti-inflammatory effects. The results also showed the relevance of L. fermentum strains for application in the food industry and for the formulation of novel biotherapeutics, especially nutraceuticals. This review provides evidence that L. fermentum strains isolated from fruit processing by-products have great potential for promoting host health and indicate the need for a translational approach to confirm their effects in humans using randomized, double-blind, placebo-controlled trials.
Collapse
Affiliation(s)
- Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | | | | | - Estefânia Fernandes Garcia
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
3
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
4
|
Bykowska-Derda A, Kałużna M, Garbacz A, Ziemnicka K, Ruchała M, Czlapka-Matyasik M. Intake of Low Glycaemic Index Foods but Not Probiotics Is Associated with Atherosclerosis Risk in Women with Polycystic Ovary Syndrome. Life (Basel) 2023; 13:799. [PMID: 36983954 PMCID: PMC10052525 DOI: 10.3390/life13030799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Women with polycystic ovary syndrome (PCOS) are at high cardiometabolic risk. The atherogenic index of plasma (AIP) strongly predicts atherosclerosis. Some studies suggest that probiotic intake may lower AIP. This study analysed the relationship between the frequency of dietary intake of low glycaemic index (prebiotic) and probiotic foods and atherosclerosis risk in women with PCOS. METHODS A total of 127 women were divided into two groups: AIP over 0.11 (highAIP) and AIP ≤ 0.11 (lowAIP). The KomPAN® questionnaire was used to measure food frequency intake; pro-healthy, non-healthy, low glycaemic and probiotic dietary indexes were calculated based on daily food consumption. Body composition was measured by air displacement plethysmography (BodPod). AIP was calculated as a logarithm of triglycerides and high-density lipoproteins from plasma. RESULTS The highAIP group was 63% less likely to consume low glycaemic index foods three or more times a day than the lowAIP group. The HighAIP group was also 62% less likely to consume buckwheat, oats, whole-grain pasta or coarse-ground grains at least a few times a week. Pro-healthy foods tended to be less frequently consumed by the highAIP group, when adjusted for BMI and age. CONCLUSION Women with PCOS at high risk of atherosclerosis consumed less low glycaemic index foods than women with a low risk of atherosclerosis. Intake of high-fibre, low glycaemic index foods could prevent atherosclerosis in women with PCOS; however, the effect of probiotic food intake remains unclear.
Collapse
Affiliation(s)
- Aleksandra Bykowska-Derda
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| | - Małgorzata Kałużna
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Agnieszka Garbacz
- Student Science Club of Dieticians, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Magdalena Czlapka-Matyasik
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| |
Collapse
|
5
|
Chen H, Cao T, Zhang B, Cai H. The regulatory effects of second-generation antipsychotics on lipid metabolism: Potential mechanisms mediated by the gut microbiota and therapeutic implications. Front Pharmacol 2023; 14:1097284. [PMID: 36762113 PMCID: PMC9905135 DOI: 10.3389/fphar.2023.1097284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the mainstay of treatment for schizophrenia and other neuropsychiatric diseases but cause a high risk of disruption to lipid metabolism, which is an intractable therapeutic challenge worldwide. Although the exact mechanisms underlying this lipid disturbance are complex, an increasing body of evidence has suggested the involvement of the gut microbiota in SGA-induced lipid dysregulation since SGA treatment may alter the abundance and composition of the intestinal microflora. The subsequent effects involve the generation of different categories of signaling molecules by gut microbes such as endogenous cannabinoids, cholesterol, short-chain fatty acids (SCFAs), bile acids (BAs), and gut hormones that regulate lipid metabolism. On the one hand, these signaling molecules can directly activate the vagus nerve or be transported into the brain to influence appetite via the gut-brain axis. On the other hand, these molecules can also regulate related lipid metabolism via peripheral signaling pathways. Interestingly, therapeutic strategies directly targeting the gut microbiota and related metabolites seem to have promising efficacy in the treatment of SGA-induced lipid disturbances. Thus, this review provides a comprehensive understanding of how SGAs can induce disturbances in lipid metabolism by altering the gut microbiota.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China,Institute of Clinical Pharmacy, Central South University, Changsha, China,International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China,*Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
6
|
Munir A, Ayesha Javed G, Javed S, Arshad N. Levilactobacillus brevis from carnivores can ameliorate hypercholesterolemia: in vitro and in vivo mechanistic evidence. J Appl Microbiol 2022; 133:1725-1742. [PMID: 35729721 DOI: 10.1111/jam.15678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
AIMS To explore the probiotic and hypocholesterolemic potential of two Levilactobacillus brevis strains of carnivore origin along with selected underlying mechanisms. METHODS AND RESULTS L. brevis MT950194 and L. brevis MW365351 were analyzed in vitro for oro-gastro-intestinal stress tolerance, cholesterol reduction, cholesterol adsorption (through scanning electron microscopy) and bile salt hydrolase (BSH) activity. Strains could survive (> 80%) in oro-gastro-intestinal conditions, reduce high amount of cholesterol (35% and 54%) from media containing bile salts (0.3%) as compared with Lactobacillus acidophilus ATCC4356 and presented least pathogenicity towards mammalian cells. Exopolysaccharide production, cell surface cholesterol adherence and BSH activity were witnessed as possible cholesterol lowering mechanisms. In in vivo experiment, the treatments of hypercholesterolemic rats with L. brevis MT950194, L. brevis MW365351 and their mixture led to significant (p < 0.05) reduction in serum and hepatic cholesterol, low density lipids, cholesterol ratio, liver steatosis, and size of adipocytes. It further ameliorated diet induced changes in hepatic enzymes. CONCLUSIONS L. brevis MT950194 and L. brevis MW365351 from carnivores have probiotic pharmacological potential and can reduce serum cholesterol through surface adherence and BSH production. SIGNIFICANCE AND IMPACT OF STUDY These strains may be utilized in treating hypercholesterolemia and production of low fat functional foods.
Collapse
Affiliation(s)
- Aneela Munir
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Saman Javed
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Najma Arshad
- Institute of Zoology, University of the Punjab, Lahore, Pakistan.,Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular, Medicine (CRIMM), The University of Lahore, Pakistan
| |
Collapse
|
7
|
Obafemi Y, Oranusi S, Oluseyi AK, Akinduti P. Genotyping of Probiotic Lactobacilli in Nigerian Fermented Condiments for Improved Food Safety. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Plant-based naturally fermented condiments usually result in poor quality products with various bacteria and fungi contaminants. Previous reports suggested the use of starter cultures from previously fermented condiments in fermentation processes to ensure health-promoting benefits, improved quality, shelf life, and organoleptic properties for the achievement of healthy nutrition, safe, and quality food.
AIM: This study aimed to genotype potential lactobacilli from locally fermented condiments for improved food safety.
METHODS: The lactobacilli colonies isolated from fermented condiments purchased from food markets in Southwest Nigeria were profiled for probiotic activities, hemolytic activities, antibiotics susceptibility, and inhibitory activities against food pathogens. Interesting probiotic lactobacilli were identified using 16S rRNA gene sequencing and evaluated for phylogenetic relatedness with other globally reported probiotic lactobacilli.
RESULTS: Lactobacillus species which expressed significant probiotics, γ-hemolysis, anti-spoilage, and anti-listerial activities (P < 0.05) with tolerable safety profiles were identified as Lactiplantibacillus plajomi YD001 (MW280136), Lactiplantibacillus plantarum YD002 (MW280139), L. plantarum YD003 (MW280137), and Lacticaseibacillus paracasei YD004 (MW280138) possessed 50.75, 50.61, 50.75, and 52.54 mol% DNA G+C contents, respectively. The species clustered into different phylogroups with high clonal relatedness with other potential lactobacilli meta-data (≥96.80%) obtained from the public repository.
CONCLUSION: Obtained genotyped Lactobacillus species are potential starter cultures for improved fermentation processes, control of food pathogens, and spoilage organisms.
Collapse
|
8
|
Lacticaseibacillus rhamnosus FM9 and Limosilactobacillus fermentum Y57 Are as Effective as Statins at Improving Blood Lipid Profile in High Cholesterol, High-Fat Diet Model in Male Wistar Rats. Nutrients 2022; 14:nu14081654. [PMID: 35458216 PMCID: PMC9027066 DOI: 10.3390/nu14081654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Elevated serum cholesterol is a major risk factor for coronary heart diseases. Some Lactobacillus strains with cholesterol-lowering potential have been isolated from artisanal food products. The purpose of this study was to isolate probiotic Lactobacillus strains from traditional yoghurt (dahi) and yogurt milk (lassi) and investigate the impact of these strains on the blood lipid profile and anti-obesity effect in a high cholesterol high fat diet model in Wistar rats. Eight candidate probiotic strains were chosen based on in vitro probiotic features and cholesterol reduction ability. By 16S rDNA sequencing, these strains were identified as Limosilactibacillus fermentum FM6, L. fermentum FM16, L. fermentum FM12, Lacticaseibacillus rhamnosus FM9, L. fermentum Y55, L. fermentum Y57, L. rhamnosus Y59, and L. fermentum Y63. The safety of these strains was investigated by feeding 2 × 108 CFU/mL in saline water for 28 days in a Wistar rat model. No bacterial translocation or any other adverse effects were observed in animals after administration of strains in water, which indicates the safety of strains. The cholesterol-lowering profile of these probiotics was evaluated in male Wistar rats using a high-fat, high-cholesterol diet (HFCD) model. For 30 days, animals were fed probiotic strains in water with 2 × 108 CFU/mL/rat/day, in addition to a high fat, high cholesterol diet. The cholesterol-lowering effects of various probiotic strains were compared to those of statin. All strains showed improvement in total cholesterol, LDL, HDL, triglycerides, and weight gain. Serum cholesterol levels were reduced by 9% and 8% for L. rhamnosus FM9 and L. fermentum Y57, respectively, compared to 5% for the statin-treated group. HDL levels significantly improved by 46 and 44% for L. rhamnosus FM9 and L. fermentum Y57, respectively, compared to 46% for the statin-treated group. Compared to the statin-treated group, FM9 and Y57 significantly reduced LDL levels by almost twofold. These findings show that these strains can improve blood lipid profiles as effectively as statins in male Wistar rats. Furthermore, probiotic-fed groups helped weight control in animals on HFCD, indicating the possible anti-obesity potential of these strains. These strains can be used to develop food products and supplements to treat ischemic heart diseases and weight management. Clinical trials, however, are required to validate these findings.
Collapse
|
9
|
Chaudhary HJ, Patel AR. Removal of aflatoxin M1 from milk and aqueous medium by indigenously isolated strains of W. confusa H1 and L. plantarum S2. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Electro-hydrodynamic processing for encapsulation of probiotics: A review on recent trends, technological development, challenges and future prospect. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Ait Chait Y, Gunenc A, Hosseinian F, Bendali F. Antipathogenic and probiotic potential of Lactobacillus brevis strains newly isolated from Algerian artisanal cheeses. Folia Microbiol (Praha) 2021; 66:429-440. [PMID: 33709378 DOI: 10.1007/s12223-021-00857-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/09/2021] [Indexed: 11/28/2022]
Abstract
From 98 Lactobacillus strains, isolated from Algerian homemade cheeses, 14 (B1-B14) were selected based on their anti-Escherichia coli and anti-Staphylococcus aureus activities. These strains were also tested towards Listeria monocytogenes 161 and Salmonella Typhimurium LT2 and further investigated for their resistance to simulated gastrointestinal digestion, cell surface properties, ability to adhere to HT-29 cells, cholesterol lowering, antioxidant activity, and technological traits. Five isolates (B9, B13, B18, B19, and B38) were active against L. monocytogenes and Salmonella. From them, three isolates, identified as Lactobacillus brevis (B9, B13, and B38) by MALDI-TOF spectrometry and 16S rDNA sequencing, exhibited high tolerance to pancreatic juice, bile salts and acidic juices, high percentages of hydrophobicity (87, 92, and 81%, respectively), auto-aggregation (61, 68, and 72%, respectively), and adherence to HT-29 cells (79, 84, and 74%, respectively), which testify on their potential of colonization of the human intestine. On the other way, the strains B9 and B13 manifested the most relevant antioxidant activity and cholesterol-lowering ability, respectively. L. brevis strains showed low acidifying and good proteolytic activities with noticeable heat tolerance. The results gathered in this study highlighted the richness of Algerian artisanal cheeses on new lactobacilli strains with an excellent probiotic potential and demonstrated that L. brevis, largely used as nonstarter in cheese manufacture, could be exploited also as a probiotic for human use.
Collapse
Affiliation(s)
- Yasmina Ait Chait
- Laboratoire de Microbiologie Appliquée, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria.,Food Science and Nutrition, Chemistry Department, Carleton University, 1125 Colonel by Drive, Ontario, Ottawa, K1S 5B6, Canada
| | - Aynur Gunenc
- Food Science and Nutrition, Chemistry Department, Carleton University, 1125 Colonel by Drive, Ontario, Ottawa, K1S 5B6, Canada
| | - Farah Hosseinian
- Food Science and Nutrition, Chemistry Department, Carleton University, 1125 Colonel by Drive, Ontario, Ottawa, K1S 5B6, Canada.,Institute of Biochemistry of Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ontario, Ottawa, K1S 5B6, Canada
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté Des Sciences de La Nature Et de La Vie, Université de Bejaia, 06000, Bejaia, Algeria.
| |
Collapse
|
12
|
Barache N, Belguesmia Y, Ladjouzi R, Bendali F, Drider D. Clusters of Lactobacillus Strains from Vegetal Origins Are Associated with Beneficial Functions: Experimental Data and Statistical Interpretations. Foods 2020; 9:E985. [PMID: 32722025 PMCID: PMC7466302 DOI: 10.3390/foods9080985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Nine strains of Lactiplantibacillus plantarum and one strain of Lacticaseibacillus paracasei that were recently isolated from prickly pears, fresh figs and blackberries, which are traditionally and largely consumed fruits in Kabylia (north of Algeria), were studied here for their antagonism and antioxidant properties as well as for production of exopolysaccharides. With respect to their inhibitory properties, these strains were tested against three food representative pathogens including Escherichia coli ATCC 8739, Staphylococcus aureus 2S6 and Listeria monocytogenes 162. The antagonism of these pathogens was attributable to lactic acid production, present in the cell free supernatant, at concentrations ranging from 9 to 16.74 g/L. The anti-adhesive properties observed on polystyrene or eukaryotic Caco-2 cells were exerted in a strain dependent-manner. Indeed, the scores obtained ranged from 27% to 75% for S. aureus 2S6, 54% to 95% for L. monocytogenes 162, and 50% to 97% for E. coli ATCC 8739. The co-aggregation of these Lactobacillus strains with the aforementioned target bacteria appeared to be exerted in a strain-dependent manner, with noticeably the upmost rate for Lb. paracasei FB1 on S. aureus 2S6. Interestingly, these novel Lactobacillus strains were able to produce a large amount (315.55 to 483.22 mg/L) of exopolysaccharides, and showed a significant scavenging activity on the 2,2-di-phényl-2-picrylhydrazyle (DPPH) synthetic free radical with rates of 51% to 56%. Of note, the highest antioxidant activity was observed for Lb. paracasei FB1 using the culture supernatants, intact cells or the intracellular extract. The statistical analysis of these data using the principal component analysis (ACP) enabled us to establish three distinct clusters with potential applications as bioprotective and/or probiotic agents, following further evaluation.
Collapse
Affiliation(s)
- Nacim Barache
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
- BIOECOAGRO Unit of Research N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV-Institut Charles Viollette, F-59000 Lille, France; (Y.B.); (R.L.)
| | - Yanath Belguesmia
- BIOECOAGRO Unit of Research N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV-Institut Charles Viollette, F-59000 Lille, France; (Y.B.); (R.L.)
| | - Rabia Ladjouzi
- BIOECOAGRO Unit of Research N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV-Institut Charles Viollette, F-59000 Lille, France; (Y.B.); (R.L.)
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Djamel Drider
- BIOECOAGRO Unit of Research N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV-Institut Charles Viollette, F-59000 Lille, France; (Y.B.); (R.L.)
| |
Collapse
|
13
|
A critical review of antibiotic resistance in probiotic bacteria. Food Res Int 2020; 136:109571. [PMID: 32846610 DOI: 10.1016/j.foodres.2020.109571] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit upon the host. At present, probiotics are gaining popularity worldwide and are widely used in food and medicine. Consumption of probiotics is increasing with further in-depth research on the relationship between intestinal flora and host health. Most people pay more attention to the function of probiotics but ignore their potential risks, such as infection and antibiotic resistance transfer to pathogenic microbes. Physiological functions, effects and mechanisms of action of probiotics were covered in this review, as well as the antibiotic resistance phenotypes, mechanisms and genes found in probiotics. Typical cases of antibiotic resistance of probiotics were also highlighted, as well as the potential risks (including pathogenicity, infectivity and excessive immune response) and corresponding strategies (dosage, formulation, and administration route). This timely study provides an avenue for further research, development and application of probiotics.
Collapse
|
14
|
Directed mutation of β-glucanases from probiotics to enhance enzymatic activity, thermal and pH stability. Arch Microbiol 2020; 202:1749-1756. [DOI: 10.1007/s00203-020-01886-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/27/2020] [Accepted: 04/11/2020] [Indexed: 12/23/2022]
|