1
|
Pepoyan E, Marotta F, Manvelyan A, Galstyan A, Stepanyan L, Grigoryan H, Grigoryan L, Mikayelyan M, Balayan M, Harutyunyan N, Mirzabekyan S, Tsaturyan V, Torok T, Pepoyan A. Placebo-resistant gut bacteria: Akkermansia muciniphila spp. and Familial Mediterranean fever disease. Front Cell Infect Microbiol 2024; 14:1336752. [PMID: 38465231 PMCID: PMC10920240 DOI: 10.3389/fcimb.2024.1336752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/19/2023] [Indexed: 03/12/2024] Open
Abstract
INTRODUCTION Despite numerous investigations into the impact of drugs/probiotics on the gut microbiota composition in Familial Mediterranean Fever (FMF) patients, the question as to whether there exists a significant bacterial diversity(ies) independent of the placebo effect that can be reliably considered in clinical and nutritional trials remains unresolved. METHODS This study represents the in augural analysis of the placebo's influence on the gut microbiota of both healthy individuals and FMF afflicted men, utilizing previously collected data from PhyloChip™ DNA microarray experiments. A total of 15 healthy and 15 FMF male volunteers, aged 18 to 50, participated in this partially randomized placebo trial, which is accessible through the GEO Series accession number GSE111835. RESULTS AND DISCUSSION Key findings from current investigations include i. the anticipated divergence in gut bacteria resistance to placebo between healthy and FMF individuals, ii. the minor impact of placebo on gut bacterial diversities in healthy individuals, with Enterobacteriaceae diversities identified as placebo-resistant among "healthy" gut bacteria, and iii. the comprehensive influence of placebo on all bacterial phyla in the gut microbiome of FMF patients, extending to nearly all bacterial genera, except for the resilience of gut Akkermansia muciniphila spp. to placebo in FMF patients. This study underscores the susceptibility of Faecalibacterium, Blautia, and Clostridium genera to placebo. Consequently, this investigation holds significance for the proper design of placebo-controlled trials and establishes a foundation for further exploration of the gut-brain axis. Furthermore, it contributes valuable insights to discussions regarding proposals for probiotic therapies, particularly focusing on Faecalibacterium spp., Blautia spp., and Clostridium spp.
Collapse
Affiliation(s)
- Elya Pepoyan
- Food Safety and Biotechnology Department, Scientific Research Institute of Food Science and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Faculty of Military Medicine, Yerevan State Medical University, Yerevan, Armenia
| | | | - Anahit Manvelyan
- Food Safety and Biotechnology Department, Scientific Research Institute of Food Science and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | - Artak Galstyan
- Faculty of Military Medicine, Yerevan State Medical University, Yerevan, Armenia
| | - Lena Stepanyan
- Food Safety and Biotechnology Department, Scientific Research Institute of Food Science and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | - Hasmik Grigoryan
- Food Safety and Biotechnology Department, Scientific Research Institute of Food Science and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | - Liana Grigoryan
- Food Safety and Biotechnology Department, Scientific Research Institute of Food Science and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | - Mikayel Mikayelyan
- Food Safety and Biotechnology Department, Scientific Research Institute of Food Science and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | - Marine Balayan
- Food Safety and Biotechnology Department, Scientific Research Institute of Food Science and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | - Natalya Harutyunyan
- Food Safety and Biotechnology Department, Scientific Research Institute of Food Science and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | - Susanna Mirzabekyan
- Food Safety and Biotechnology Department, Scientific Research Institute of Food Science and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | - Vardan Tsaturyan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Faculty of Military Medicine, Yerevan State Medical University, Yerevan, Armenia
| | - Tamas Torok
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Astghik Pepoyan
- Food Safety and Biotechnology Department, Scientific Research Institute of Food Science and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| |
Collapse
|
2
|
Yu Y, Lin X, Feng F, Wei Y, Wei S, Gong Y, Guo C, Wang Q, Shuai P, Wang T, Qin H, Li G, Yi L. Gut microbiota and ionizing radiation-induced damage: Is there a link? ENVIRONMENTAL RESEARCH 2023; 229:115947. [PMID: 37080277 DOI: 10.1016/j.envres.2023.115947] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
According to observational findings, ionizing radiation (IR) triggers dysbiosis of the intestinal microbiota, affecting the structural composition, function, and species of the gut microbiome and its metabolites. These modifications can further exacerbate IR-induced damage and amplify proinflammatory immune responses. Conversely, commensal bacteria and favorable metabolites can remodel the IR-disturbed gut microbial structure, promote a balance between anti-inflammatory and proinflammatory mechanisms in the body, and mitigate IR toxicity. The discovery of effective and safe remedies to prevent and treat radiation-induced injuries is vitally needed because of the proliferation of radiation toxicity threats produced by recent radiological public health disasters and increasing medical exposures. This review examines how the gut microbiota and its metabolites are linked to the processes of IR-induced harm. We highlight protective measures based on interventions with gut microbes to optimize the distress caused by IR damage to human health. We offer prospects for research in emerging and promising areas targeting the prevention and treatment of IR-induced damage.
Collapse
Affiliation(s)
- Yueqiu Yu
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Feiyang Feng
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyun Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuang Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaqi Gong
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Caimao Guo
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingyu Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peimeng Shuai
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tiantian Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hui Qin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guoqing Li
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Mirzabekyan S, Harutyunyan N, Manvelyan A, Malkhasyan L, Balayan M, Miralimova S, Chikindas ML, Chistyakov V, Pepoyan A. Fish Probiotics: Cell Surface Properties of Fish Intestinal Lactobacilli and Escherichia coli. Microorganisms 2023; 11:microorganisms11030595. [PMID: 36985169 PMCID: PMC10052099 DOI: 10.3390/microorganisms11030595] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
The properties of intestinal bacteria/probiotics, such as cell surface hydrophobicity (CSH), auto-aggregation, and biofilm formation ability, play an important role in shaping the relationship between the bacteria and the host. The current study aimed to investigate the cell surface properties of fish intestinal bacteria and probiotics. Microbial adhesion to hydrocarbons was tested according to Kos and coauthors. The aggregation abilities of the investigated strains were studied as described by Collado and coauthors. The ability of bacterial isolates to form a biofilm was determined by performing a qualitative analysis using crystal violet staining based on the attachment of bacteria to polystyrene. These studies prove that bacterial cell surface hydrophobicity (CSH) is associated with the growth medium, and the effect of the growth medium on CSH is species-specific and likely also strain-specific. Isolates of intestinal lactobacilli from fish (Salmo ischchan) differed from isolates of non-fish/shrimp origin in the relationship between auto-aggregation and biofilm formation. Average CSH levels for fish lactobacilli and E. coli might were lower compared to those of non-fish origin, which may affect the efficiency of non-fish probiotics use in fisheries due to the peculiarities of the hosts’ aquatic lifestyles.
Collapse
Affiliation(s)
- Susanna Mirzabekyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Natalya Harutyunyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Anahit Manvelyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Lilit Malkhasyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Marine Balayan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
| | - Shakhlo Miralimova
- Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100125, Uzbekistan
| | - Michael L. Chikindas
- Health Promoting Natural Laboratory, Rutgers State University, New Brunswick, NJ 08901, USA
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Str., 19/1, 119146 Moscow, Russia
| | - Vladimir Chistyakov
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia
- D.I. Ivanovsky Academy of Biology and Biotechnology, Southern Federal University, Prosp. Stachky 194/1, 344090 Rostov-on-Don, Russia
| | - Astghik Pepoyan
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan 0009, Armenia
- The International Scientific-Educational Center of the National Academy of Sciences of the Republic of Armenia, Yerevan 0019, Armenia
- Correspondence: or or ; Tel.: +374-91-432490
| |
Collapse
|
4
|
Tsaturyan V, Manvelyan A, Balayan M, Harutyunyan N, Pepoyan E, Torok T, Chikindas M, Pepoyan A. Host genetics and gut microbiota composition: Baseline gut microbiota composition as a possible prognostic factor for the severity of COVID-19 in patients with familial Mediterranean fever disease. Front Microbiol 2023; 14:1107485. [PMID: 37065143 PMCID: PMC10098164 DOI: 10.3389/fmicb.2023.1107485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 04/18/2023] Open
Abstract
Background It is known that the gut microbiome of a healthy person affects the process of COVID-19 after getting infected with SARS-CoV-2 virus. It is also believed that colchicine can alleviate the severity of COVID-19. Objective Current investigations aimed to evaluate the associations between the baseline gut microbiota composition of healthy and Familial Mediterranean fever (FMF) - carrier Armenian men populations, and the severity of the COVID-19 disease after their infection with the SARS-CoV-2. The study has a purpose of answering three core questions: i. Do the characteristics of gut microbiome of Armenians affect the course of COVID-19 severity? ii. How does the COVID-19 disease course on go for FMF patients who have been taking colchicine as a medication over the years after getting infected with SARS-CoV-2? iii. Is there an initial gut micribiota structure pattern for non-FMF and FMF patients in the cases when COVID-19 appears in mild form? Methods The gut microbiota composition in non-FMF and FMF patients before the first infection (mild and moderate course of COVID-19) was considered. COVID-19 was diagnosed by SARS-CoV-2 nucleic acid RT-PCR in nasopharyngeal swab and/or sputum. Results The number of patients with male FMF with mild COVID-19 was approximately two times higher than that of non-FMF male subjects with COVID-19. In addition, an association of COVID-19 disease severity with the baseline gut Prevotella, Clostridium hiranonis, Eubacterium biforme, Veillonellaceae, Coprococcus, and Blautia diversities in the non-FMF and FMF populations were revealed by us, which can be used as risk/prognostic factor for the severity of COVID-19.
Collapse
Affiliation(s)
- Vardan Tsaturyan
- Faculty of Military Medicine, Yerevan State Medical University, Yerevan, Armenia
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | - Anahit Manvelyan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | - Marine Balayan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | - Natalya Harutyunyan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | - Elya Pepoyan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | - Tamas Torok
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Michael Chikindas
- Health Promoting Naturals Laboratory, Rutgers State University, New Brunswick, NJ, United States
| | - Astghik Pepoyan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
- Division of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
- The International Scientific-Educational Center of the National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- *Correspondence: Astghik Pepoyan
| |
Collapse
|
5
|
Yu I, Wu R, Tokumaru Y, Terracina KP, Takabe K. The Role of the Microbiome on the Pathogenesis and Treatment of Colorectal Cancer. Cancers (Basel) 2022; 14:5685. [PMID: 36428777 PMCID: PMC9688177 DOI: 10.3390/cancers14225685] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The gut microbiome has long been known to play a role in various aspects of health modulation, including the pathogenesis of colorectal cancer (CRC). With immunotherapy recently emerging as a successful treatment in microsatellite instability high (MSI-high) CRC, and with a newly demonstrated involvement of the gut microbiome in the modulation of therapeutic responses, there has been an explosion of research into the mechanisms of microbial effects on CRC. Harnessing and reprogramming the microbiome may allow for the expansion of these successes to broader categories of CRC, the prevention of CRC in high-risk patients, and the enhancement of standard treatments. In this review, we pull together both well-documented phenomena and recent discoveries that pertain to the microbiome and CRC. We explore the microbial mechanisms associated with CRC pathogenesis and progression, recent advancements in CRC systemic therapy, potential options for diagnosis and prevention, as well as directions for future research.
Collapse
Affiliation(s)
- Irene Yu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14203, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | | | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14203, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
6
|
Evaluation of Malondialdehyde Levels, Oxidative Stress and Host–Bacteria Interactions: Escherichia coli and Salmonella Derby. Cells 2022; 11:cells11192989. [PMID: 36230950 PMCID: PMC9564265 DOI: 10.3390/cells11192989] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Either extracts, cell-free suspensions or bacterial suspensions are used to study bacterial lipid peroxidation processes. Along with gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, and several other strategies, the thiobarbituric acid test is used for the determination of malondialdehyde (MDA) as the basis for the commercial test kits and the colorimetric detection of lipid peroxidation. The aim of the current study was to evaluate lipid peroxidation processes levels in the suspensions, extracts and culture supernatants of Escherichia coli and Salmonella Derby strains. The dependence of the formation of thiobarbituric acid-reactive substances levels in the cell extracts, the suspensions and cell-free supernatants on bacterial species, and their concentration and growth phase were revealed. The effect of bacterial concentrations on MDA formation was also found to be more pronounced in bacterial suspensions than in extracts, probably due to the dynamics of MDA release into the intercellular space. This study highlights the possible importance of MDA determination in both cell-free suspensions and extracts, as well as in bacterial suspensions to elucidate the role of lipid peroxidation processes in bacterial physiology, bacteria–host interactions, as well as in host physiology.
Collapse
|
7
|
Harutyunyan N, Kushugulova A, Hovhannisyan N, Pepoyan A. One Health Probiotics as Biocontrol Agents: One Health Tomato Probiotics. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101334. [PMID: 35631758 PMCID: PMC9145216 DOI: 10.3390/plants11101334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 05/06/2023]
Abstract
Tomato (Lycopersicon esculentum) is one of the most popular and valuable vegetables in the world. The most common products of its industrial processing in the food industry are juice, tomato paste, various sauces, canned or sun-dried fruits and powdered products. Tomato fruits are susceptible to bacterial diseases, and bacterial contamination can be a risk factor for the safety of processed tomato products. Developments in bioinformatics allow researchers to discuss target probiotic strains from an existing large number of probiotic strains for any link in the soil-plant-animal-human chain. Based on the literature and knowledge on the "One Health" concept, this study relates to the suggestion of a new term for probiotics: "One Health probiotics", beneficial for the unity of people, animals, and the environment. Strains of Lactiplantibacillus plantarum, having an ability to ferment a broad spectrum of plant carbohydrates, probiotic effects in human, and animal health, as well as being found in dairy products, vegetables, sauerkraut, pickles, some cheeses, fermented sausages, fish products, and rhizospheric soil, might be suggested as one of the probable candidates for "One Health" probiotics (also, for "One Health-tomato" probiotics) for the utilization in agriculture, food processing, and healthcare.
Collapse
Affiliation(s)
- Natalya Harutyunyan
- Food Safety and Biotechnology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
| | - Almagul Kushugulova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan 010000, Kazakhstan;
| | - Narine Hovhannisyan
- Plant Origin Raw Material Processing Technology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
| | - Astghik Pepoyan
- Food Safety and Biotechnology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
- Correspondence: ; Tel.: +374-91-432-493
| |
Collapse
|
8
|
Tsaturyan V, Kushugulova A, Mirzabekyan S, Sidamonidze K, Tsereteli D, Torok T, Pepoyan A. Promising Indicators in Probiotic-recommendations in COVID-19 and its Accompanying Diseases. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Scientific data suggests the possible beneficial role of probiotics in treatments for COVID-19, but the species/strains-specificity and disease-specificity of probiotics need high attention in choosing the appropriate probiotic in diseases, in particularly in the COVID-19. We hope this review will raise awareness of the COVID-19 probiotic recommendations, highlighting the latest scientific information about virus/hydrogen peroxide/probiotics and the importance of finding out of a specific “criterion” for the probiotics’ recommendation in this disease.
Collapse
|
9
|
Kossumov A, Mussabay K, Pepoyan A, Tsaturyan V, Sidamonidze K, Tsereteli D, Supiyev A, Kozhakhmetov S, Chulenbayeva L, Dusmagambetov M, Pignatelli M, Zhumadilov Z, Marotta F, Kushugulova A. Digestive System and Severe Acute Respiratory Syndrome Coronavirus 2: New Era of Microbiome Study and Gastrointestinal Tract Manifestations during the Coronavirus Disease-19 Pandemic. Open Access Maced J Med Sci 2021; 9:676-682. [DOI: 10.3889/oamjms.2021.7470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Main focuses of the review were that during the pandemic of SARS-CoV-2 were gastrointestinal disorders were accompanying. Viral RNA and viral particles are found in feces for more than 30 days. Although SARS-CoV-2 primarily causes lung infection through binding to ACE2 receptors, intestinal epithelial cells, especially enterocytes of the small intestine, also express ACE2 receptors. It is also known that a respiratory viral infection causes disturbances in the gut microbiota. Diet, environmental factors, and genetics play an important role in the formation of gut microbiota, which can affect immunity. The diversity of gut microbiota diminishes in old age, and Covid-19 has been mostly fatal in older patients, further indicating the role that gut microbiota may play in this disease. It is therefore plausible that the gut microbiota could be a new therapeutic target and that probiotics could have a role in the management of these patients.
Collapse
|
10
|
The Effect of Immunobiotic/Psychobiotic Lactobacillus acidophilus Strain INMIA 9602 Er 317/402 Narine on Gut Prevotella in Familial Mediterranean Fever: Gender-Associated Effects. Probiotics Antimicrob Proteins 2021; 13:1306-1315. [PMID: 34132998 DOI: 10.1007/s12602-021-09779-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Possible mechanisms involved in sex-dependent differences in the gut microbiota have a growing interest worldwide, but the effects of probiotics dependence on the gender of the host have remained outside of researchers' attention until now. Previously, our research data described gender-specific differences in the gut microbiota of Armenian Familial Mediterranean fever (FMF) patients. Taking into account the possible association of Prevotella spp. with depressive disorders, the aim of the current investigations was an evaluation of changes in the abundance of gut Prevotella of FMF patients in association with the patient's depression and gender. The differences between healthy and FMF diseased gut microbiota in terms of Prevotella abundance were revealed. In addition, the gender-dependent effects of immunobiotic/psychobiotic Narine on the abundance of gut Prevotella of FMF patients and patients' depression scores were shown by us in this study.
Collapse
|
11
|
Koay KP, Tsai BCK, Kuo CH, Kuo WW, Luk HN, Day CH, Chen RJ, Chen MYC, Padma VV, Huang CY. Hyperglycemia-Induced Cardiac Damage Is Alleviated by Heat-Inactivated Lactobacillus reuteri GMNL-263 via Activation of the IGF1R Survival Pathway. Probiotics Antimicrob Proteins 2021; 13:1044-1053. [PMID: 33527184 DOI: 10.1007/s12602-021-09745-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Diabetes-induced cardiomyocyte apoptosis is one of the major causes of mortality in patients with diabetes. Numerous studies have indicated the beneficial effects of Lactobacillus reuteri GMNL-263. However, the protective effect of Lactobacillus reuteri GMNL-263 in cardiac damage associated with diabetes remains poorly understood. In this study, we aimed to investigate the protective effect of Lactobacillus reuteri GMNL-263 on cardiomyocytes in diabetic rats. Five-week-old male Wistar rats were categorized into normal control group, diabetes group (55 mg/kgw STZ-induced diabetes via intraperitoneal injection), and diabetic animals treated with Lactobacillus reuteri GMNL-263 (109 CFU/rat/day, oral administration for 4 weeks). The results were presented that oral administration of a high dose of Lactobacillus reuteri GMNL-263 in diabetic rats activated IGF1R cell survival pathways to decrease the Fas-dependent and mitochondrial-dependent apoptotic pathways induced by hyperglycemia. We found that GMNL-263 significantly attenuated cell apoptosis via the IGF1R survival pathway in diabetic rats. The findings of this study suggest that GMNL-263 treatment maybe an effective therapeutic approach for the prevention of cardiac apoptosis in patients with diabetes.
Collapse
Affiliation(s)
- Ker-Ping Koay
- Department of Anesthesia, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Hsiang-Ning Luk
- Department of Anesthesia, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Department of Biological Science and Technology, Asia University, Taichung, Taiwan. .,Center of General Education, Tzu Chi University of Science and Technology, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|