1
|
Sharma S, Uddin N, Sodhi GK, Hirad AH, George N, Kaur G, Kajale S, Kaur R, Bose JC, Dwibedi V. Isolation, Screening, and Identification of Staphylococcus epidermidis with Effective Probiotic Attributes. Curr Microbiol 2025; 82:235. [PMID: 40192816 DOI: 10.1007/s00284-025-04206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/21/2025] [Indexed: 05/17/2025]
Abstract
In this investigation, Staphylococcus epidermidis SAS1 strain was isolated and assessed for its probiotic, antioxidant, antimicrobial, and anti-cancerous properties. The strain demonstrated no gelatinase, DNase, or hemolytic activity, highlighting its safety for human use. Comprehensive tests were conducted to assess its probiotic potential, including its tolerance and survival under in-vitro gastric conditions, such as acidic pH and bile salts as well as antimicrobial potential. Furthermore, the CAE (crude antibacterial extract) extracted from S. epidermidis exhibited potent free radical scavenging activities against the different radicals such as super anion, 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), nitrogen oxide, and hydroxyl. The SAS1 strain also exhibited ferric ion and cupric-reducing antioxidant power. The anti-cancerous potential of the strain was also determined by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, which was carried out using the human colorectal adenocarcinoma cell line HT-29. An IC50 value of 8.30 ± 0.35 µg/mL and morphological changes in HT-29 cells, including apoptotic damage, cell shrinkage, and release of cellular content, depicted the anti-cancerous nature of the strain. The potent lipase inhibition activity of SAS1 may expand the scope of treating diseases associated with lipid metabolism. These findings underscore the efficacy in vitro efficacy of the S. epidermidis SAS1 strain as a probiotic, antioxidant, lipase inhibitor, and anti-cancerous agent, which can be further studied for potential treatment of colon cancer and other therapeutic applications.
Collapse
Affiliation(s)
- Sonia Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Nazim Uddin
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Gurleen Kaur Sodhi
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| | - Nancy George
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Gursharan Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Swapnil Kajale
- Progenics Laboratories Private Limited, Raidurgam, Khajaguda (V), Serilingampally (M), Ranga Reddy Dist., Hyderabad, Telangana, 500032, India
| | | | - Jagdish Chandra Bose
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
2
|
Wang D, Xu R, Liu S, Sun X, Zhang T, Shi L, Wang Y. Enhancing the application of probiotics in probiotic food products from the perspective of improving stress resistance by regulating cell physiological function: A review. Food Res Int 2025; 199:115369. [PMID: 39658167 DOI: 10.1016/j.foodres.2024.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Probiotic foods are foods containing probiotics, including dairy and non-dairy products, that exert significant beneficial impacts on human health. Benefiting from the rapid progress in systems biology, diverse types of probiotics with prominent health-promoting functionalities are unraveled, albeit such functions could be substantially influenced by the stress environments. Here, we conducted a comprehensive review to characterize the state-of-the-art research on probiotic foods and specific probiotics employed in their production. We summarized the detrimental effects of various environmental stresses, including those encountered during industrial fermentation and storage (in vitro), as well as in vivo conditions such as digestion and intestinal colonization, on the biological functions of probiotics. Furthermore, this review outlines the recent advancements in elucidating the mechanisms of stress resistance, which are expected to enhance targeted probiotic applications and optimize their functional properties. Additionally, we summarized various strategies aimed at improving stress tolerance by regulating cell physiological function, specifically adaptive laboratory evolution, preadaptation treatment, exogenous supplementation, and molecular biological manipulation. This review underscores the significance of enhancing our understanding of stress tolerance mechanisms at a systems level and developing efficacious anti-stress strategies to enhance the application of probiotics while maximizing their biological functionalities.
Collapse
Affiliation(s)
- Dingkang Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruijie Xu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sha Liu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaomin Sun
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianxiao Zhang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
3
|
Zhu LY, Zhang MY, Juan-Cheng, Zhang YX. Shield-armed probiotic delivery system based on co-deposition of poly-dopamine and poly-lysine helps Lactiplantibacillus plantarum relieve hyperuricemia. Int J Biol Macromol 2024; 280:135666. [PMID: 39299415 DOI: 10.1016/j.ijbiomac.2024.135666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hyperuricemia (HUA) is a disease characterized by an abnormal metabolism of purine. Lactic acid bacteria (LAB) have attracted much attention for their safe and effective treatment of HUA by inhibiting xanthine oxidase (XOD) and regulating gut microbiota. However, the effectiveness of probiotics can be compromised by the harsh environment of the gastrointestinal tract. In preliminary experiments, Lactiplantibacillus plantarum DY1, which is generally regarded as safe (GRAS), can lower uric acid. We have devised a straightforward and efficient technique for encapsulating DY1 using a coating comprising polydopamine (PDA) co-deposited with poly-l-lysine (PLL) to obtain DY1@PDLL. TEM, SEM, FT-IR and DLS tests showed that DY1 was successfully coated. Incubate at SGF or SIF for 3 h, the number of viable bacteria of free probiotics and DY1@PDLL decreased by 0.92 and 0.46 log cfu/mL, 1.66 and 0.66 log cfu/mL, respectively. The fluorescence intensity of the intestines of the DY1@PDLL treated mice was 3.96 times that of free probiotic. Notably, DY1@PDLL can reduce the uric acid levels of HUA mice by 31.63 % and free probiotics by 18.72 % (≈1.69 times). DY1@PDLL could also regulate gut microbiota and serum metabolic profile. These findings unequivocally highlight the remarkable potential of DY1@PDLL as an exceptional oral probiotic delivery system.
Collapse
Affiliation(s)
- Lin-Yan Zhu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Juan-Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
4
|
Nguyen AV, Yaghoobi M, Zhang S, Li P, Li Q, Dogan B, Ahnrud GP, Flock G, Marek P, Simpson KW, Abbaspourrad A. Adaptive Laboratory Evolution of Probiotics toward Oxidative Stress Using a Microfluidic-Based Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306974. [PMID: 38247174 DOI: 10.1002/smll.202306974] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Indexed: 01/23/2024]
Abstract
Adaptive laboratory evolution (ALE) can be used to make bacteria less susceptible to oxidative stress. An alternative to large batch scale ALE cultures is to use microfluidic platforms, which are often more economical and more efficient. Microfluidic ALE platforms have shown promise, but many have suffered from subpar cell passaging mechanisms and poor spatial definition. A new approach is presented using a microfluidic Evolution on a Chip (EVoc) design which progressively drives microbial cells from areas of lower H2O2 concentration to areas of higher concentration. Prolonged exposure, up to 72 h, revealed the survival of adaptive strains of Lacticaseibacillus rhamnosus GG, a beneficial probiotic often included in food products. After performing ALE on this microfluidic platform, the bacteria persisted under high H2O2 concentrations in repeated trials. After two progressive exposures, the ability of L. rhamnosus to grow in the presence of H2O2 increased from 1 mm H2O2 after a lag time of 31 h to 1 mm after 21 h, 2 mm after 28 h, and 3 mm after 42 h. The adaptive strains have different morphology, and gene expression compared to wild type, and genome sequencing revealed a potentially meaningful single nucleotide mutation in the protein omega-amidase.
Collapse
Affiliation(s)
- Ann V Nguyen
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Mohammad Yaghoobi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853, USA
| | - Peilong Li
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Qike Li
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853, USA
| | - Gianna P Ahnrud
- DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760, USA
| | - Genevieve Flock
- DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760, USA
| | - Patrick Marek
- DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760, USA
| | - Kenneth W Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Sun T, Jiang H, Xu X, Ma Y, Liang X, Wang R, Gu Y, Li S, Qiu Y, Sun D, Xu H, Lei P. Adaptive laboratory evolution of Naematelia aurantialba under high temperature for efficient production of exopolysaccharide. Int J Biol Macromol 2024; 263:130425. [PMID: 38412938 DOI: 10.1016/j.ijbiomac.2024.130425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Liquid fermentation could revolutionize mushroom polysaccharide production, but the low temperature constraint hampers the process. This study implemented adaptive laboratory evolution (ALE) to enhance the thermotolerance of Naematelia aurantialba strains and increase expolysaccharide production. After 75 ALE cycles at 30 °C, the adaptive strain surpassed the wild-type strain by 5 °C. In a 7.5 L fermentor at 30 °C, the ALE strain yielded 17 % more exopolysaccharide than the wild type strain at 25 °C. Although the exopolysaccharide synthesized by both strains shares a consistent monosaccharide composition, infrared spectrum, and glycosidic bond composition, the ALE strain's exopolysaccharide has a larger molecular weight. Furthermore, the ALE strain's exopolysaccharide exhibits superior cryoprotection performance compared to that produced by the original strain. The adapted strain demonstrated lower ROS levels and increased activity of antioxidant enzymes, indicating improved performance. Fatty acid profiling and transcriptomics revealed reconfiguration of carbohydrate metabolism, amino acid metabolism, and membrane lipid synthesis in thermophilic strains, maintaining cellular homeostasis and productivity. This study provides efficient strains and fermentation methods for high-temperature mushroom polysaccharide production, reducing energy consumption and costs.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hao Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yuhang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoning Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Dafeng Sun
- Kunming Edible Fungi Institute of All China Federation of Supply and Marketing Cooperatives, Kunming 650032, Yunnan, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
6
|
Wang B, Rutherfurd-Markwick K, Liu N, Zhang XX, Mutukumira AN. Evaluation of the probiotic potential of yeast isolated from kombucha in New Zealand. Curr Res Food Sci 2024; 8:100711. [PMID: 38524400 PMCID: PMC10958227 DOI: 10.1016/j.crfs.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
The current study investigated the in vitro probiotic potential of yeast isolated from kombucha, a tea beverage fermented with a symbiotic culture of acetic acid bacteria and yeast. A total of 62 yeast strains were previously isolated from four different commercial kombucha samples sold in New Zealand. Fifteen representative isolates belonging to eight different species were evaluated for their growth under different conditions (temperature, low pH, concentrations of bile salts, and NaCl). Cell surface characteristics, functional and enzymatic activities of the selected strains were also studied in triplicate experiments. Results showed that six strains (Dekkera bruxellensis LBY1, Sachizosaccharomyces pombe LBY5, Hanseniaspora valbyensis DOY1, Brettanomyces anomalus DOY8, Pichia kudraivzevii GBY1, and Saccharomyces cerevisiae GBY2) were able to grow under low-acid conditions (at pH 2 and pH 3) and in the presence of bile salts. This suggests their potential to survive passage through the human gut. All 15 strains exhibited negative enzymatic activity reactions (haemolytic, gelatinase, phospholipase, and protease activities), and thus, they can be considered safe to consume. Notably, two of the fifteen strains (Pichia kudraivzevii GBY1 and Saccharomyces cerevisiae GBY2) exhibited desirable cell surface hydrophobicity (64.60-83.87%), auto-aggregation (>98%), co-aggregation, resistance to eight tested antibiotics (ampicillin, chloramphenicol, colistin sulphate, kanamycin, nalidixic acid, nitrofurantoin, streptomycin, and tetracycline), and high levels of antioxidant activities (>90%). Together, our data reveal the probiotic activities of two yeast strains GBY1 and GBY2 and their potential application in functional food production.
Collapse
Affiliation(s)
- Boying Wang
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | | | - Ninghui Liu
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University, Auckland, 0745, New Zealand
| | - Anthony N. Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| |
Collapse
|
7
|
Derunets AS, Selimzyanova AI, Rykov SV, Kuznetsov AE, Berezina OV. Strategies to enhance stress tolerance in lactic acid bacteria across diverse stress conditions. World J Microbiol Biotechnol 2024; 40:126. [PMID: 38446232 DOI: 10.1007/s11274-024-03905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/21/2024] [Indexed: 03/07/2024]
Abstract
Lactic acid bacteria (LAB) hold significant importance in diverse fields, including food technology, industrial biotechnology, and medicine. As basic components of starter cultures, probiotics, immunomodulators, and live vaccines, LAB cells resist a variety of stressors, including temperature fluctuations, osmotic and pH shocks, exposure to oxidants and ultraviolet radiation, substrate deprivation, mechanical damage, and more. To stay alive in these adversities, LAB employ a wide range of stress response strategies supported by various mechanisms, for example rearrangement of metabolism, expression of specialized biomolecules (e.g., chaperones and antioxidants), exopolysaccharide synthesis, and complex repair and regulatory systems. LAB can coordinate responses to various stressors using global regulators. In this review, we summarize current knowledge about stress response strategies used by LAB and consider mechanisms of response to specific stressful factors, supported by illustrative examples. In addition, we discuss technical approaches to increase the stress resistance of LAB, including pre-adaptation, genetic modification of strains, and adjustment of cultivation conditions. A critical analysis of the recent findings in this field augments comprehension of stress tolerance mechanisms in LAB, paving the way for prospective research directions with implications in fundamental and practical areas.
Collapse
Affiliation(s)
- A S Derunets
- National Research Center Kurchatov Institute, Moscow, Russia.
| | | | - S V Rykov
- National Research Center Kurchatov Institute, Moscow, Russia
| | - A E Kuznetsov
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - O V Berezina
- National Research Center Kurchatov Institute, Moscow, Russia
| |
Collapse
|
8
|
Bommasamudram J, Muthu A, Devappa S. Effect of prebiotics on thermally acclimatized lactobacilli cultures and their application as synbiotics in RTD fruit drinks. 3 Biotech 2023; 13:311. [PMID: 37621320 PMCID: PMC10444933 DOI: 10.1007/s13205-023-03737-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, the effect of prebiotics such as fructooligosaccharides (FOS), galactooligosaccharides (GOS), isomaltooligosaccharides (IMO), and inulin on the probiotic biomass and its probiotic properties were studied for thermally acclimatized Lactobacillus helveticus (H-45) and Lacticaseibacillus casei N (N-45) strains at 45 ℃ using adaptive laboratory evolution method. Among the prebiotics studied, GOS was found to be more suitable for synbiotic preparation. The tolerance of lactobacilli cultures H-45 and N-45 in the presence of acid and bile were 4.79 and 8.60% and 2.84 and 4.65% higher than their wild-type strains (H-37 and N-37). Similarly, H-45 and N-45 showed an increase in survivability of 5.29 and 8.63% under simulated gastric conditions and 9.21 and 7.70% under simulated intestinal conditions than H-37 and N-37. Propionic acid yield increased by 0.65-fold in N-45 compared to N-37 in the presence of GOS as a prebiotic, whereas H-37 showed 0.26-fold higher propionic acid production than H-45. Thermally acclimatized strain N-45 showed better survivability under stress conditions than H-45. The synbiotic combination of N45 + GOS was spray-dried using corn starch (CS) as carrier material to obtain spray-dried synbiotic powder (N45 + CS + GOS). This synbiotic powder was added to the ready-to-drink (RTD) fruit drinks prepared from five fruit-flavoured squashes (pineapple, orange, grape, mango, and lemon ginger). The varied amounts of added synbiotic powder did not significantly alter the physicochemical properties of the fruit drinks. Hence, synbiotic formulation N45 + GOS + CS may find application in developing various functional foods.
Collapse
Affiliation(s)
- Jyothna Bommasamudram
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Arjun Muthu
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| | - Somashekar Devappa
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020 India
| |
Collapse
|
9
|
Growth fitness, heme uptake and genomic variants in mutants of oxygen-tolerant Lacticaseibacillus casei and Lactiplantibacillus plantarum strains. Microbiol Res 2022; 262:127096. [DOI: 10.1016/j.micres.2022.127096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
|