1
|
Rashid H, Anwar H, Baig FM, Mukhtar I, Muhammad T, Zaidi A. Potentially probiotic NPL 1334 strain of Enterococcus durans benefits rats with diet-induced hypercholesterolemia. BMC Biotechnol 2025; 25:7. [PMID: 39825321 PMCID: PMC11740586 DOI: 10.1186/s12896-024-00943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025] Open
Abstract
PURPOSE To study the potential of a candidate probiotic strain belonging to the Enterococcus durans species in alleviating hypercholesterolemia and improving the microbial milieu of rat gut. METHODS A previously isolated and characterized E. durans strain NPL 1334 was further screened in vitro for its bile salt hydrolyzation and cholesterol assimilation ability. An in vivo trial using diet-induced hypercholesterolemic rats was conducted to evaluate the effects of the administered test probiotic strain on the animal's blood biochemical parameters such as total cholesterol (TC), high-density lipopolysaccharides (HDL), low-density lipopolysaccharides (LDL), triglycerides (TG), on body weight, oxidative stress markers, and its impact on intestinal and fecal microbiota as well as a histopathological examination of the test animal's livers. RESULTS E. durans strain showed good bile salt hydrolyzing ability and ample cholesterol assimilation in vitro. Probiotic-fed hypercholesterolemic rats showed significantly lowered cholesterol, triglyceride and LDL levels. The body weight of probiotic-fed rats was reduced as compared to the control. E. durans also stimulated the growth of beneficial LAB in the intestine of experimental rats and did not harm the liver of the experimental rats. CONCLUSION E. durans can be a natural therapeutic alternative to manage diet-induced hypercholesterolemia and may eventually enhance anti-cholesterolemic therapies.
Collapse
Affiliation(s)
- Hannan Rashid
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- National Probiotic Lab, National Institute for Biotechnology and Genetic Engineering-College (NIBGE-C) PIEAS, Faisalabad, Punjab, 38000, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University (GCUF), Faisalabad, Punjab, Pakistan
| | - Fakhir Mehmood Baig
- Department of Physiology, Government College University (GCUF), Faisalabad, Punjab, Pakistan
| | - Imran Mukhtar
- Department of Physiology, Government College University (GCUF), Faisalabad, Punjab, Pakistan
| | - Tariq Muhammad
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- National Probiotic Lab, National Institute for Biotechnology and Genetic Engineering-College (NIBGE-C) PIEAS, Faisalabad, Punjab, 38000, Pakistan
| | - Arsalan Zaidi
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
- National Probiotic Lab, National Institute for Biotechnology and Genetic Engineering-College (NIBGE-C) PIEAS, Faisalabad, Punjab, 38000, Pakistan.
| |
Collapse
|
2
|
Treven P, Paveljšek D, Bogovič Matijašić B, Mohar Lorbeg P. The Effect of Food Matrix Taken with Probiotics on the Survival of Commercial Probiotics in Simulation of Gastrointestinal Digestion. Foods 2024; 13:3135. [PMID: 39410170 PMCID: PMC11475386 DOI: 10.3390/foods13193135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The adequate survival of probiotics in the harsh environment of the gastrointestinal (GI) tract plays a crucial role in the expression of their functional properties. The aim of the present study was to evaluate the survival of commercial probiotics during digestion using a standardised INFOGEST 2.0 model extended with three food matrices simulating three scenarios for the consumption of probiotics: on an empty stomach, with juice, or with food (porridge). All eight products matched the bacterial content stated on the label. After simulated digestion, we observed an average decrease in viability of 1.6 log10 colony forming units (CFU) when the product was co-digested with water, a 2.5 log10 CFU decrease in the presence of juice, and a 1.2 log10 CFU decrease in the presence of porridge. The survival rate of the probiotics was statistically higher in the test samples with porridge (91.8%) than in those with juice (79.0%). For two products, the number of lactobacilli and bifidobacteria strains after digestion was less than <3 × 105 CFU, which can be considered insufficient. The present study has shown that the survival of probiotic strains during GI passage depends not only on their ability to withstand these harsh conditions but may also be influenced by the manufacturing process and by the foods consumed together with the probiotics.
Collapse
Affiliation(s)
- Primož Treven
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Groblje 3, SI-1230 Domžale, Slovenia
| | | | | | | |
Collapse
|
3
|
Liang D, Wu F, Zhou D, Tan B, Chen T. Commercial probiotic products in public health: current status and potential limitations. Crit Rev Food Sci Nutr 2023; 64:6455-6476. [PMID: 36688290 DOI: 10.1080/10408398.2023.2169858] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Consumption of commercial probiotics for health improvement and disease treatment has increased in popularity among the public in recent years. The local shops and pharmacies are brimming with various probiotic products such as probiotic food, dietary supplement and pharmaceuticals that herald a range of health benefits, from nutraceutical benefits to pharmaceutical effects. However, although the probiotic market is expanding rapidly, there is increasing evidence challenging it. Emerging insights from microbiome research and public health demonstrate several potential limitations of the natural properties, regulatory frameworks, and market consequences of commercial probiotics. In this review, we highlight the potential safety and performance issues of the natural properties of commercial probiotics, from the genetic level to trait characteristics and probiotic properties and further to the probiotic-host interaction. Besides, the diverse regulatory frameworks and confusing probiotic guidelines worldwide have led to product consequences such as pathogenic contamination, overstated claims, inaccurate labeling and counterfeit trademarks for probiotic products. Here, we propose a plethora of available methods and strategies related to strain selection and modification, safety and efficacy assessment, and some recommendations for regulatory agencies to address these limitations to guarantee sustainability and progress in the probiotic industry and improve long-term public health and development.
Collapse
Affiliation(s)
- Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Dexi Zhou
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Mu Y, Zhang C, Li T, Jin FJ, Sung YJ, Oh HM, Lee HG, Jin L. Development and Applications of CRISPR/Cas9-Based Genome Editing in Lactobacillus. Int J Mol Sci 2022; 23:12852. [PMID: 36361647 PMCID: PMC9656040 DOI: 10.3390/ijms232112852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/25/2023] Open
Abstract
Lactobacillus, a genus of lactic acid bacteria, plays a crucial function in food production preservation, and probiotics. It is particularly important to develop new Lactobacillus strains with superior performance by gene editing. Currently, the identification of its functional genes and the mining of excellent functional genes mainly rely on the traditional gene homologous recombination technology. CRISPR/Cas9-based genome editing is a rapidly developing technology in recent years. It has been widely applied in mammalian cells, plants, yeast, and other eukaryotes, but less in prokaryotes, especially Lactobacillus. Compared with the traditional strain improvement methods, CRISPR/Cas9-based genome editing can greatly improve the accuracy of Lactobacillus target sites and achieve traceless genome modification. The strains obtained by this technology may even be more efficient than the traditional random mutation methods. This review examines the application and current issues of CRISPR/Cas9-based genome editing in Lactobacillus, as well as the development trend of CRISPR/Cas9-based genome editing in Lactobacillus. In addition, the fundamental mechanisms of CRISPR/Cas9-based genome editing are also presented and summarized.
Collapse
Affiliation(s)
- Yulin Mu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chengxiao Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Taihua Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Feng-Jie Jin
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yun-Ju Sung
- BioNanotechnology Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Long Jin
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Lacerda DC, Trindade da Costa PC, Pontes PB, Carneiro dos Santos LA, Cruz Neto JPR, Silva Luis CC, de Sousa Brito VP, de Brito Alves JL. Potential role of Limosilactobacillus fermentum as a probiotic with anti-diabetic properties: A review. World J Diabetes 2022; 13:717-728. [PMID: 36188141 PMCID: PMC9521441 DOI: 10.4239/wjd.v13.i9.717] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress, inflammation, and gut microbiota impairments have been implicated in the development and maintenance of diabetes mellitus. Strategies capable of recovering the community of commensal gut microbiota and controlling diabetes mellitus have increased in recent years. Some lactobacilli strains have an antioxidant and anti-inflammatory system capable of protecting against oxidative stress, inflammation, and diabetes mellitus. Experimental studies and some clinical trials have demonstrated that Limosilactobacillus fermentum strains can beneficially modulate the host antioxidant and anti-inflammatory system, resulting in the amelioration of glucose homeostasis in diabetic conditions. This review presents and discusses the currently available studies on the identification of Limosilactobacillus fermentum strains with anti-diabetic properties, their sources, range of dosage, and the intervention time in experiments with animals and clinical trials. This review strives to serve as a relevant and well-cataloged reference of Limosilactobacillus fermentum strains capable of inducing anti-diabetic effects and promoting health benefits.
Collapse
Affiliation(s)
- Diego Cabral Lacerda
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | - Paulo César Trindade da Costa
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | - Paula Brielle Pontes
- Department of Neuropsychiatry, Health Sciences Center, Federal University of Pernambuco, Recife, 50670-901, Pernambuco, Brazil
| | | | | | - Cristiane Cosmo Silva Luis
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | | | | |
Collapse
|