1
|
Raja M, Ramamurthy K, Sudhakaran G, Guru A, Arockiaraj J. Exploring the potential of bacterial-derived EVs for targeted enzyme replacement therapy: mechanisms, applications, and future directions. Arch Microbiol 2025; 207:118. [PMID: 40208336 DOI: 10.1007/s00203-025-04294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 04/11/2025]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles produced by cells which promote intercellular communication by delivering different contents such as DNA, RNA, and proteins. These vesicles, nano-sized and released into the extracellular space, are present everywhere under both normal and pathological conditions. Probiotic-derived EVs can serve as nanocarriers for therapeutic cargo, particularly in enzyme replacement therapy (ERT). Traditional ERT for lysosomal storage diseases (LSDs) faces significant challenges, including the inability of enzymes to cross the blood-brain barrier (BBB) and their susceptibility to degradation. Studies show EVs can transport enzyme cargoes across the BBB, accurately delivering them to tissues affected by LSDs. Probiotic EVs also possess immunomodulatory properties, providing therapeutic benefits in inflammatory conditions. However, their potential for delivering deficient enzymes in LSDs remains unclear. This review discusses using probiotic EVs in ERT for targeted enzyme delivery to treat LSDs more efficiently than other exosomes. This novel strategy minimizes off-target delivery and enhances immunomodulatory effects, making it more advantageous than live probiotic bacteria. Probiotic EVs show promise for therapeutic approaches, especially in treating LSDs and inflammatory diseases, by modulating immune responses and delivering enzymes across biological barriers like the BBB. Future research should optimize production, engineer targeted therapies, and confirm safety and efficacy through clinical trials. Expanding studies to include diverse probiotic strains could uncover new therapeutic applications, enhancing their versatility and effectiveness.
Collapse
Affiliation(s)
- Mohanakrishna Raja
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Wronowska E, Guevara-Lora I, Brankiewicz A, Bras G, Zawrotniak M, Satala D, Karkowska-Kuleta J, Budziaszek J, Koziel J, Rapala-Kozik M. Synergistic effects of Candida albicans and Porphyromonas gingivalis biofilms on epithelial barrier function in a 3D aspiration pneumonia model. Front Cell Infect Microbiol 2025; 15:1552395. [PMID: 40125517 PMCID: PMC11925950 DOI: 10.3389/fcimb.2025.1552395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Polymicrobial infections involving Candida albicans and Porphyromonas gingivalis represent a significant challenge in maintaining epithelial barrier integrity. This study explores their synergistic effects on epithelial cells using an air-liquid interface (ALI) model. Methods Mixed-species biofilms were developed and analyzed for their impact on epithelial permeability and tight junction proteins. The effects of biofilm supernatants on IL-8 secretion and oxidative stress markers were also evaluated. The role of P. gingivalis proteases was assessed using a gingipain-null mutant (ΔKΔRAB) compared to the wild-type strain (W83). Survival experiments were conducted using Galleria mellonella larvae to examine the pathogenicity of dual-species biofilms. Results Mixed-species biofilms significantly increased epithelial permeability and disrupted tight junction proteins, as evidenced by reduced levels of ZO-1 and E-cadherin. These changes were accompanied by oxidative stress, characterized by decreased HO-1 expression and enhanced Bax/Bcl-xL ratios, indicating increased pro-apoptotic activity. Supernatants from dual-species biofilms demonstrated a pronounced effect on epithelial cells, modulating IL-8 secretion and exacerbating oxidative damage. C. albicans was identified as the dominant driver of pro-inflammatory responses, while P. gingivalis contributed through immune modulation and enzymatic activity, primarily via gingipains. The ΔKΔRAB mutant biofilms caused less epithelial disruption and oxidative stress compared to the wild-type, highlighting the critical role of gingipains in pathogenesis. Discussion Survival experiments using Galleria mellonella larvae supported these findings, highlighting the reduced survival associated with dual-species biofilms and the potential for high-dose antimicrobial therapies to mitigate this effect. These results emphasize the cooperative mechanisms of C. albicans and P. gingivalis in compromising epithelial barriers and underline the importance of combination therapies targeting both fungal and bacterial components in polymicrobial infections.
Collapse
Affiliation(s)
- Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Ibeth Guevara-Lora
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Brankiewicz
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Joanna Budziaszek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
3
|
Kyei-Baffour VO, Vijaya AK, Burokas A, Daliri EBM. Psychobiotics and the gut-brain axis: advances in metabolite quantification and their implications for mental health. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 39907087 DOI: 10.1080/10408398.2025.2459341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Psychobiotics are live microorganisms that, when administered in adequate amounts, confer mental health benefits to the host. Several clinical studies have demonstrated significant mental health benefits from psychobiotic administration, making them an emerging topic in food science. Certain strains of Lactobacillus, Bifidobacterium, Streptococcus, Escherichia, and Enterococcus species are known for their ability to modulate the gut-brain axis and provide mental health benefits. Proposed action mechanisms include the production of neuroactive compounds or their precursors, which may cross the blood-brain barrier, or transported by their extracellular vesicles. However, there is a lack of in vivo evidence directly confirming these mechanisms, although indirect evidence from recent studies suggest potential pathways for further investigation. To advance our understanding, it is crucial to study these mechanisms within the host, with accurate quantification of neuroactive compounds and/or their precursors being key in such studies. Current quantification methods, however, face challenges, such as low sensitivity for detecting trace metabolites and limited specificity due to interference from other compounds, impacting the reliability of measurements. This review discusses the emerging field of psychobiotics, their potential action mechanisms, neuroactive compound estimation techniques, and perspectives for improvement in quantifying neuroactive compounds and/or precursors within the host.
Collapse
Affiliation(s)
- Vincent Owusu Kyei-Baffour
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
4
|
Kowalik K, Kulig K, Karnas E, Barczyk-Woznicka O, Zuba-Surma E, Pyza E, Rapala-Kozik M, Karkowska-Kuleta J. Extracellular vesicles of Lactiplantibacillus plantarum PCM 2675 and Lacticaseibacillus rhamnosus PCM 489: an introductory characteristic. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:580-596. [PMID: 39811727 PMCID: PMC11725429 DOI: 10.20517/evcna.2024.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025]
Abstract
Aim: Extracellular vesicles (EVs) are involved in intercellular and interkingdom communication in the complex communities that constitute the niche-specific microbiome of the colonized host. Therefore, studying the structure and content of EVs produced by resident bacteria is crucial to understanding their functionality and impact on the host and other microorganisms. Methods: Bacterial EVs were isolated by differential centrifugation, their size and concentration were measured by transmission electron microscopy and nanoparticle tracking analysis, and the cargo proteins were identified by liquid chromatography coupled to tandem mass spectrometry. The cytotoxicity of bacterial EVs was tested using the human epithelial cell line A549 and an in vivo model of Galleria mellonella larvae. Results: The isolation and preliminary characteristics of EVs from two strains of lactic acid bacteria - Lactiplantibacillus plantarum PCM 2675 and Lacticaseibacillus rhamnosus PCM 489 - were presented, confirming the production of vesicular structures with sizes in the range of 50-170 nm for L. plantarum and 80-250 nm for L. rhamnosus. In addition, various proteins were identified within EVs cargo, with distinct locations of origin, including membrane, cytoplasmic and extracellular proteins, and with diverse functions, including enzymes with confirmed proteolytic activity. Furthermore, bacterial EVs did not show statistically significant cytotoxicity to the host under the tested conditions. Conclusions: A better understanding of the composition and functionality of bacterial EVs may contribute to their future effective use in supporting human health.
Collapse
Affiliation(s)
- Katarzyna Kowalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków 30-387, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków 30-387, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| |
Collapse
|
5
|
Stastna M. The Role of Proteomics in Identification of Key Proteins of Bacterial Cells with Focus on Probiotic Bacteria. Int J Mol Sci 2024; 25:8564. [PMID: 39201251 PMCID: PMC11354107 DOI: 10.3390/ijms25168564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Probiotics can affect human health, keep the balance between beneficial and pathogenic bacteria, and their colonizing abilities enable the enhancement of the epithelial barrier, preventing the invasion of pathogens. Health benefits of probiotics were related to allergy, depression, eczema, cancer, obesity, inflammatory diseases, viral infections, and immune regulation. Probiotic bacterial cells contain various proteins that function as effector molecules, and explaining their roles in probiotic actions is a key to developing efficient and targeted treatments for various disorders. Systematic proteomic studies of probiotic proteins (probioproteomics) can provide information about the type of proteins involved, their expression levels, and the pathological changes. Advanced proteomic methods with mass spectrometry instrumentation and bioinformatics can point out potential candidates of next-generation probiotics that are regulated under pharmaceutical frameworks. In addition, the application of proteomics with other omics methods creates a powerful tool that can expand our understanding about diverse probiotic functionality. In this review, proteomic strategies for identification/quantitation of the proteins in probiotic bacteria were overviewed. The types of probiotic proteins investigated by proteomics were described, such as intracellular proteins, surface proteins, secreted proteins, and the proteins of extracellular vesicles. Examples of pathological conditions in which probiotic bacteria played crucial roles were discussed.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00 Brno, Czech Republic
| |
Collapse
|
6
|
Liu Y, Wang C, Xie L, Du S, Ding L, Cui Y, Chen R, Zhang J, Wang W, Liu X, Wang Y, Chen S, Tan T, Zhao Q, Yin L, Li C, Chen Y, Ding T. Metagenomics analysis identifies oral Streptococcus as potential biomarkers for nasopharyngeal carcinoma. J Genet Genomics 2024; 51:363-366. [PMID: 37977508 DOI: 10.1016/j.jgg.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Yanmin Liu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Chengtao Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lixiang Xie
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Shuling Du
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Li Ding
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Ying Cui
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Runzhi Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Jingxiang Zhang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Wan Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yan Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shiyan Chen
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Tian Tan
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Qiaochu Zhao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Limei Yin
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yong Chen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
7
|
Rodrigues ML, May RC, Janbon G. The multiple frontiers in the study of extracellular vesicles produced by fungi. Microbes Infect 2024; 26:105233. [PMID: 37805124 DOI: 10.1016/j.micinf.2023.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The production of extracellular vesicles (EVs) by fungi has been recognized for about a decade. Here we discuss the roles played by fungal EVs in biofilm formation, antifungal resistance, and release of immunogens with vaccine potential. We also explore their significance in promoting international collaboration and understanding of fungal biology.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, PR, 81310-020, Brazil; Microbiology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Robin C May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France.
| |
Collapse
|
8
|
Abubaker S, Miri S, Mottawea W, Hammami R. Microbial Extracellular Vesicles in Host-Microbiota Interactions. Results Probl Cell Differ 2024; 73:475-520. [PMID: 39242390 DOI: 10.1007/978-3-031-62036-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Extracellular vesicles have emerged as key players in cellular communication, influencing various physiological processes and pathophysiological progression, including digestion, immune response, and tissue repairs. Recently, a class of EVs derived from microbial communities has gained significant attention due to their pivotal role in intercellular communication and their potential as biomarkers and biotherapeutic agents. Microbial EVs are membrane-bound molecules encapsulating bioactive metabolites that modulate host physiological and pathological processes. This chapter discusses the evolving history of microbiota-produced EVs, including their discovery, characterization, current research status, and their diverse mechanisms of interaction with other microbes and hosts. This review also highlights the importance of EVs in health and disease and discusses recent research that shows promising results for the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Sarah Abubaker
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Saba Miri
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Kulig K, Bednaruk K, Rudolphi-Szydło E, Barbasz A, Wronowska E, Barczyk-Woznicka O, Karnas E, Pyza E, Zuba-Surma E, Rapala-Kozik M, Karkowska-Kuleta J. Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages. Int J Mol Sci 2023; 24:17179. [PMID: 38139005 PMCID: PMC10742962 DOI: 10.3390/ijms242417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO2 by the fungal pathogen Candida albicans were investigated. The interaction of EVs with human pro-monocytes of the U-937 cell line was established, and the most notable effect was attributed to oxidative stress-related EVs. The immunomodulatory potential of tested EVs against human THP-1 macrophages was verified using cytotoxicity assay, ROS-production assay, and the measurement of cytokine production. All fungal EVs tested did not show a significant cytotoxic effect on THP-1 cells, although a slight pro-oxidative impact was indicated for EVs released by C. albicans cells grown under oxidative stress. Furthermore, for all tested types of EVs, the pro-inflammatory properties related to increased IL-8 and TNF-α production and decreased IL-10 secretion were demonstrated, with the most significant effect observed for EVs released under oxidative stress conditions.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Bednaruk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
10
|
Karkowska-Kuleta J, Kulig K, Bras G, Stelmaszczyk K, Surowiec M, Kozik A, Karnas E, Barczyk-Woznicka O, Zuba-Surma E, Pyza E, Rapala-Kozik M. Candida albicans Biofilm-Derived Extracellular Vesicles Are Involved in the Tolerance to Caspofungin, Biofilm Detachment, and Fungal Proteolytic Activity. J Fungi (Basel) 2023; 9:1078. [PMID: 37998883 PMCID: PMC10672323 DOI: 10.3390/jof9111078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
It has been repeatedly reported that the cells of organisms in all kingdoms of life produce nanometer-sized lipid membrane-enveloped extracellular vesicles (EVs), transporting and protecting various substances of cellular origin. While the composition of EVs produced by human pathogenic fungi has been studied in recent decades, another important challenge is the analysis of their functionality. Thus far, fungal EVs have been shown to play significant roles in intercellular communication, biofilm production, and modulation of host immune cell responses. In this study, we verified the involvement of biofilm-derived EVs produced by two different strains of Candida albicans-C. albicans SC5314 and 3147 (ATCC 10231)-in various aspects of biofilm function by examining its thickness, stability, metabolic activity, and cell viability in the presence of EVs and the antifungal drug caspofungin. Furthermore, the proteolytic activity against the kininogen-derived antimicrobial peptide NAT26 was confirmed by HPLC analysis for C. albicans EVs that are known to carry, among others, particular members of the secreted aspartic proteinases (Saps) family. In conclusion, EVs derived from C. albicans biofilms were shown to be involved in biofilm tolerance to caspofungin, biofilm detachment, and fungal proteolytic activity.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Karolina Stelmaszczyk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|