1
|
Chao CT, Kuo FC, Lin SH. Epigenetically regulated inflammation in vascular senescence and renal progression of chronic kidney disease. Semin Cell Dev Biol 2024; 154:305-315. [PMID: 36241561 DOI: 10.1016/j.semcdb.2022.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Chronic kidney disease (CKD) and its complications, including vascular senescence and progressive renal fibrosis, are associated with inflammation. Vascular senescence, in particular, has emerged as an instrumental mediator of vascular inflammation that potentially worsens renal function. Epigenetically regulated inflammation involving histone modification, DNA methylation, actions of microRNAs and other non-coding RNAs, and their reciprocal reactions during vascular senescence and inflammaging are underappreciated. Their synergistic effects can contribute to CKD progression. Vascular senotherapeutics or pharmacological anti-senescent therapies based on epigenetic machineries can therefore be plausible options for ameliorating vascular aging and even halting the worsening of renal fibrosis. These include histone deacetylase modulators, histone methyltransferase modulators, other histone modification effectors, DNA methyltransferase inhibitors, telomerase reverse transcriptase enhancers, microRNA mimic delivery, and small molecules with microRNA-regulating potentials. Some of these molecules have already been tested and have shown anecdotal evidence for treating uremic vasculopathy and renal fibrosis, supporting the feasibility of this approach.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Nephrology division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chih Kuo
- Division of Endocrinology, Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Nephrology division, Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
2
|
Hurstel M, Joly L, Imbert L, Zimmermann G, Roch V, Schoepfer P, Lamiral Z, Salvi P, Benetos A, Verger A, Marie PY. Volume of the proximal half of the thoracic aorta is the most comprehensive FDG-PET/CT indicator of arterial aging throughout adulthood. Eur J Hybrid Imaging 2023; 7:11. [PMID: 37369917 DOI: 10.1186/s41824-023-00169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) features of the proximal and more elastic half of the thoracic aorta are known to correlate with aorta stiffness in older populations. This prospective study aimed to analyze the changes in these FDG-PET/CT features between young, middle-aged, and older adults, and investigate associations with arterial stiffness and blood pressure (BP). METHODS Young (< 40 years), middle-aged (40-to-60 years), and older (> 60 years) adults, who underwent an FDG-PET/CT, were prospectively recruited. FDG-PET/CT features of the proximal half of the thoracic aorta were analyzed relative to the age categories, BP and carotid-femoral pulse wave velocity (PWV), a reference indicator of aorta stiffness. RESULTS We included 79 patients (38 women; 22 young, 19 middle-aged, and 38 older adults). An increase in age category was associated with increases in mean standardized uptake values (SUVs) of blood and aorta and most significantly in aorta SUV heterogeneity, represented by SUV standard deviation (SUV-SD), aorta calcification volume, and the aorta volume indexed to body surface area. However, this indexed aorta volume was the sole variable: (i) exhibiting a stepwise increase from young (median: 25 cm3/m2 [interquartile range: 20-28 cm3/m2]), to middle-aged (41 [30-48] cm3/m2, p < 0.001 vs. Young), and older (62 [44-70] cm3/m2, p < 0.001 vs. middle-age) adults, and (ii) selected in the multivariate predictions of systolic, diastolic, and pulse BP. Indexed aorta volume was also a multivariate predictor of PWV but in association with SUV-SD and hypertension. CONCLUSION In a population of patients referred to an FDG-PET/CT investigation, the indexed volume of the proximal and more elastic half of the thoracic aorta is the most comprehensive indicator of arterial aging. This imaging parameter exhibits a stepwise increase from young to middle-aged and older adults, is strongly linked to inter-individual changes in both arterial stiffness and BP, and thus, could help assess the early phases of arterial aging. Trial registration ClinicalTrial.gov, NCT03345290. Registered 17 November 2017, https://clinicaltrials.gov/ct2/show/NCT03345290?term=NCT03345290&draw=2&rank=1.
Collapse
Affiliation(s)
- Moira Hurstel
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
| | - Laure Joly
- Geriatric Department, CHRU Nancy, Université de Lorraine, Nancy, France
- INSERM, DCAC, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
- IADI, INSERM U1254, Université de Lorraine, Nancy, France
| | - Gaetan Zimmermann
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
| | - Véronique Roch
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
| | - Pauline Schoepfer
- Geriatric Department, CHRU Nancy, Université de Lorraine, Nancy, France
| | - Zohra Lamiral
- INSERM, CIC 1433, Université de Lorraine, CHRU-Nancy, Nancy, France
| | - Paolo Salvi
- Department of Cardiology, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Athanase Benetos
- Geriatric Department, CHRU Nancy, Université de Lorraine, Nancy, France
- INSERM, DCAC, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
- IADI, INSERM U1254, Université de Lorraine, Nancy, France
| | - Pierre-Yves Marie
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France.
- INSERM, DCAC, Université de Lorraine, Vandœuvre-lès-Nancy, France.
- Médecine Nucléaire, Hôpital de Brabois, CHRU-Nancy, rue Morvan, 54500, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
3
|
Bian S, Yang L, Zhao D, Lv L, Wang T, Yuan H. HMGB1/TLR4 signaling pathway enhances abdominal aortic aneurysm progression in mice by upregulating necroptosis. Inflamm Res 2023; 72:703-713. [PMID: 36745209 DOI: 10.1007/s00011-023-01694-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE AND DESIGN The age-associated increases in aseptic inflammation and necroptosis are closely related to the emergence of various age-associated diseases. METHODS In this study, the role of HMGB1/TLR4-induced necroptosis in abdominal aortic aneurysm (AAA) formation was investigated. First, the levels of sterile inflammatory mediators (HMGB1, TLR4) and necroptosis markers were measured in the abdominal aortas of young and old C57BL/6JNifdc mice. We observed that sterile inflammatory mediators and necroptosis markers were greatly increased in the abdominal aortas of old mice. Then, angiotensin II (Ang II)-induced AAA model in APOE-/- mice was used in this study. Mice AAA models were treated with the RIP1 inhibitor necrostatin-1 (Nec-1) or the TLR4 inhibitor TAK-242, respectively. RESULTS We found that HMGB1, TLR4, and necroptosis markers were elevated in old mice compared with those in young mice. Same elevation was also found in the development of AAA in APOE-/- mice. In addition, the necroptosis inhibitor Nec-1 alleviated Ang II-induced AAA development while downregulating the expression of HMGB1/TLR4. After blocking TLR4 with TAK-242, the expression of necroptosis markers decreased significantly, and the progression of AAA was also alleviated in APOE-/- mice. CONCLUSIONS Our results indicated that HMGB1/TLR4-mediated necroptosis enhances AAA development in the Ang II-induced AAA model in APOE-/- mice and that TLR4 might be a potential therapeutic target for AAA management.
Collapse
Affiliation(s)
- Shuai Bian
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Invasive Therapy, Anqing Municipal Hospital (Anqing Hospital Affiliated to Anhui Medical University), Anqing, China
| | - Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | | | - Lizhi Lv
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tiezheng Wang
- Department of Medical Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Medical Ultrasound, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China. .,Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
Okamura Y, Nakanishi R, Hashimoto H, Mizumura S, Homma S, Ikeda T. Relationship Between 18F-fluorodeoxyglucose Uptake on Positron Emission Tomography and Aortic Calcification. ANNALS OF NUCLEAR CARDIOLOGY 2022; 8:57-66. [PMID: 36540185 PMCID: PMC9749753 DOI: 10.17996/anc.22-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 06/17/2023]
Abstract
Introduction: Although 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has been widely utilized to assess the extent of inflammation, the association between the extent and severity of atherosclerosis and 18F-FDG uptake on PET remains unexamined. The current study aimed to investigate whether aortic calcium (AC) scores were associated with increased aortic uptake of 18F-FDG on PET. Methods: A total of 167 consecutive patients with suspected lung cancer but unproven malignancy who underwent non-contrast-enhanced computed tomography (CT) and 18F-FDG PET/CT were enrolled. The average standardized uptake values in the ascending aorta were used to calculate the target-to-background ratio (Mean TBR). The total (thoracic and abdominal) AC scores were measured on non-contrast-enhanced chest and abdominal CT using the Agatston method, and were categorized into three groups (0, 1-399, and ≥400). The relationship between total AC scores and 18F-FDG uptake in the ascending aorta was assessed using multivariate linear regression analysis. Results: In total, 68.26% were male, and a mean age was 67.10±14.70 years. Mean TBR values increased progressively with total AC score 0, 1-399, and ≥400 (1.01±0.07, 1.08±0.09, and 1.11±0.11, respectively; p<0.00001). Multivariate linear regression analysis revealed that increased total AC scores of 1-399 (β=0.06, 95% CI: 0.01-0.11, p=0.02) and ≥400 (β=0.11, 95% CI: 0.06-0.16, p<0.001) were significantly associated with higher Mean TBR. Conclusions: The current study demonstrated that total AC scores were associated with Mean TBR. Patients with a greater extent and severity of aortic calcifications may possess increased atherosclerotic inflammatory activity as measured by 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Yuriko Okamura
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Rine Nakanishi
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Hidenobu Hashimoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Toho University Faculty of Medicine, Tokyo, Japan
| | - Sunao Mizumura
- Department of Radiology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Sakae Homma
- Department of Respiratory Medicine, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Dong J, Jin S, Guo J, Yang R, Tian D, Xue H, Xiao L, Guo Q, Wang R, Xu M, Teng X, Wu Y. Pharmacological inhibition of eIF2alpha phosphorylation by integrated stress response inhibitor (ISRIB) ameliorates vascular calcification in rats. Physiol Res 2022; 71:379-388. [PMID: 35616039 DOI: 10.33549/physiolres.934797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vascular calcification (VC) is an independent risk factor for cardiovascular events and all-cause mortality with the absence of current treatment. This study aimed to investigate whether eIF2alpha phosphorylation inhibition could ameliorate VC. VC in rats was induced by administration of vitamin D3 (3×10(5) IU/kg, intramuscularly) plus nicotine (25 mg/kg, intragastrically). ISRIB (0.25 mg/kg·week), an inhibitor of eIF2alpha phosphorylation, ameliorated the elevation of calcium deposition and ALP activity in calcified rat aortas, accompanied by amelioration of increased SBP, PP, and PWV. The decreased protein levels of calponin and SM22alpha, and the increased levels of RUNX2 and BMP2 in calcified aorta were all rescued by ISRIB, while the increased levels of the GRP78, GRP94, and C/EBP homologous proteins in rats with VC were also attenuated. Moreover, ISRIB could prevent the elevation of eIF2alpha phosphorylation and ATF4, and partially inhibit PERK phosphorylation in the calcified aorta. These results suggested that an eIF2alpha phosphorylation inhibitor could ameliorate VC pathogenesis by blocking eIF2alpha/ATF4 signaling, which may provide a new target for VC prevention and treatment.
Collapse
Affiliation(s)
- J Dong
- Department of Physiology, Hebei Medical University, Shijiazhuang, China. and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Trott DW, Fadel PJ. Inflammation as a mediator of arterial ageing. Exp Physiol 2019; 104:1455-1471. [PMID: 31325339 DOI: 10.1113/ep087499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review summarizes and synthesizes what is known about the contribution of inflammation to age-related arterial dysfunction. What advances does it highlight? This review details observational evidence for the relationship of age-related inflammation and arterial dysfunction, insight from autoimmune inflammatory diseases and their effects on arterial function, interventional evidence linking inflammation and age-related arterial dysfunction, insight into age-related arterial inflammation from preclinical models and interventions to ameliorate age-related inflammation and arterial dysfunction. ABSTRACT Advanced age is a primary risk factor for cardiovascular disease, the leading cause of death in the industrialized world. Two major components of arterial ageing are stiffening of the large arteries and impaired endothelium-dependent dilatation in multiple vascular beds. These two alterations are major contributors to the development of overt cardiovascular disease. Increasing inflammation with advanced age is likely to play a role in this arterial dysfunction. The purpose of this review is to synthesize what is known about inflammation and its relationship to age-related arterial dysfunction. This review discusses both the initial observational evidence for the relationship of age-related inflammation and arterial dysfunction and the evidence that inflammatory autoimmune diseases are associated with a premature arterial ageing phenotype. We next discuss interventional and mechanistic evidence linking inflammation and age-related arterial dysfunction in older adults. We also attempt to summarize the relevant evidence from preclinical models. Lastly, we discuss interventions in both humans and animals that have been shown to ameliorate age-related arterial inflammation and dysfunction. The available evidence provides a strong basis for the role of inflammation in both large artery stiffening and impairment of endothelium-dependent dilatation; however, the specific inflammatory mediators, the initiating factors and the relative importance of the endothelium, smooth muscle cells, perivascular adipose tissue and immune cells in arterial inflammation are not well understood. With the expansion of the ageing population, ameliorating age-related arterial inflammation represents an important potential strategy for preserving vascular health in the elderly.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
7
|
Wang M, Monticone RE, McGraw KR. Proinflammatory Arterial Stiffness Syndrome: A Signature of Large Arterial Aging. J Vasc Res 2018; 55:210-223. [PMID: 30071538 PMCID: PMC6174095 DOI: 10.1159/000490244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Age-associated structural and functional remodeling of the arterial wall produces a productive environment for the initiation and progression of hypertension and atherosclerosis. Chronic aging stress induces low-grade proinflammatory signaling and causes cellular proinflammation in arterial walls, which triggers the structural phenotypic shifts characterized by endothelial dysfunction, diffuse intimal-medial thickening, and arterial stiffening. Microscopically, aged arteries exhibit an increase in arterial cell senescence, proliferation, invasion, matrix deposition, elastin fragmentation, calcification, and amyloidosis. These characteristic cellular and matrix alterations not only develop with aging but can also be induced in young animals under experimental proinflammatory stimulation. Interestingly, these changes can also be attenuated in old animals by reducing low-grade inflammatory signaling. Thus, mitigating age-associated proinflammation and arterial phenotype shifts is a potential approach to retard arterial aging and prevent the epidemic of hypertension and atherosclerosis in the elderly.
Collapse
|
8
|
Impact of Vascular Calcifications on Long Femoropopliteal Stenting Outcomes. Ann Vasc Surg 2018; 47:170-178. [DOI: 10.1016/j.avsg.2017.08.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/03/2023]
|
9
|
Espitia O, Chatelais M, Steenman M, Charrier C, Maurel B, Georges S, Houlgatte R, Verrecchia F, Ory B, Lamoureux F, Heymann D, Gouëffic Y, Quillard T. Implication of molecular vascular smooth muscle cell heterogeneity among arterial beds in arterial calcification. PLoS One 2018; 13:e0191976. [PMID: 29373585 PMCID: PMC5786328 DOI: 10.1371/journal.pone.0191976] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/15/2018] [Indexed: 11/29/2022] Open
Abstract
Vascular calcification is a strong and independent predictive factor for cardiovascular complications and mortality. Our previous work identified important discrepancies in plaque composition and calcification types between carotid and femoral arteries. The objective of this study is to further characterize and understand the heterogeneity in vascular calcification among vascular beds, and to identify molecular mechanisms underlying this process. We established ECLAGEN biocollection that encompasses human atherosclerotic lesions and healthy arteries from different locations (abdominal, thoracic aorta, carotid, femoral, and infrapopliteal arteries) for histological, cell isolation, and transcriptomic analysis. Our results show that lesion composition differs between these locations. Femoral arteries are the most calcified arteries overall. They develop denser calcifications (sheet-like, nodule), and are highly susceptible to osteoid metaplasia. These discrepancies may derive from intrinsic differences between SMCs originating from these locations, as microarray analysis showed specific transcriptomic profiles between primary SMCs isolated from each arterial bed. These molecular differences translated into functional disparities. SMC from femoral arteries showed the highest propensity to mineralize due to an increase in basal TGFβ signaling. Our results suggest that biological heterogeneity of resident vascular cells between arterial beds, reflected by our transcriptomic analysis, is critical in understanding plaque biology and calcification, and may have strong implications in vascular therapeutic approaches.
Collapse
Affiliation(s)
- Olivier Espitia
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
- CHU Hôtel Dieu, Nantes, France
| | - Mathias Chatelais
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - Marja Steenman
- Institut du Thorax, Inserm UMR1087, Faculté de Médecine, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Céline Charrier
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - Blandine Maurel
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
- CHU Hôtel Dieu, Nantes, France
| | - Steven Georges
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - Rémi Houlgatte
- Inserm U954, Faculty of Medicine, Nancy, France, DRCI, University Hospital of Nancy, Nancy, France
| | - Franck Verrecchia
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - Benjamin Ory
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - François Lamoureux
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, site René Gauducheau, Boulevard Professeur Jacques Monod, Saint-Herblain, France
- University of Sheffield, Department of Oncology and Metabolism, INSERM, European Associated Laboratory “Sarcoma Research Unit”, Medical School, Sheffield, United Kingdom
- University of Nantes, Faculty of Medicine, Nantes, France
| | - Yann Gouëffic
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
- CHU Hôtel Dieu, Nantes, France
| | - Thibaut Quillard
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
- CHU Hôtel Dieu, Nantes, France
- * E-mail:
| |
Collapse
|
10
|
Cardiovascular MRI in Thoracic Aortopathy: A Focused Review of Recent Literature Updates. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|