1
|
John D, Gottwald W, Berthe D, Wirtensohn S, Hickler J, Heck L, Herzen J. X-ray dark-field computed tomography for monitoring of tissue freezing. Sci Rep 2024; 14:5599. [PMID: 38454107 PMCID: PMC10920745 DOI: 10.1038/s41598-024-56201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Accurately monitoring the extent of freezing in biological tissue is an important requirement for cryoablation, a minimally invasive cancer treatment that induces cell death by freezing tissue with a cryoprobe. During the procedure, monitoring is required to avoid unnecessary harm to the surrounding healthy tissue and to ensure the tumor is properly encapsulated. One commonly used monitoring method is attenuation-based computed tomography (CT), which visualizes the ice ball by utilizing its hypoattenuating properties compared to unfrozen tissue. However, the contrast between frozen and unfrozen tissue remains low. In a proof-of-principle experiment, we show that the contrast between frozen and unfrozen parts of a porcine phantom mimicking breast tissue can be greatly enhanced by acquiring X-ray dark-field images that capture the increasing small-angle scattering caused by the ice crystals formed during the procedure. Our results show that, compared to X-ray attenuation, the frozen region is detected significantly better in dark-field radiographs and CT scans of the phantom. These findings demonstrate that X-ray dark-field imaging could be a potential candidate for improved monitoring of cryoablation procedures.
Collapse
Affiliation(s)
- Dominik John
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany.
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany.
| | - Wolfgang Gottwald
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Daniel Berthe
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Sami Wirtensohn
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Julia Hickler
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Lisa Heck
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
| | - Julia Herzen
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
2
|
Gombos EC, Jagadeesan J, Richman DM, Kacher DF. Magnetic Resonance Imaging-Guided Breast Interventions: Role in Biopsy Targeting and Lumpectomies. Magn Reson Imaging Clin N Am 2015; 23:547-61. [PMID: 26499274 DOI: 10.1016/j.mric.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Contrast-enhanced breast MR imaging is increasingly being used to diagnose breast cancer and to perform biopsy procedures. The American Cancer Society has advised women at high risk for breast cancer to have breast MR imaging screening as an adjunct to screening mammography. This article places special emphasis on biopsy and operative planning involving MR imaging and reviews use of breast MR imaging in monitoring response to neoadjuvant chemotherapy. Described are peer-reviewed data on currently accepted MR imaging-guided procedures for addressing benign and malignant breast diseases, including intraoperative imaging.
Collapse
Affiliation(s)
- Eva C Gombos
- Division of Breast Imaging, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | - Jayender Jagadeesan
- Surgical Planning Laboratory, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Danielle M Richman
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Daniel F Kacher
- Surgical Planning Laboratory, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|