1
|
Lazo REL, Alves FMS, Domingos EL, Cobre ADF, Farago PV, Cruz L, Tasca T, Pontarolo R, Ferreira LM. Advances in soft nanoparticle-based platforms for human and veterinary trichomoniasis therapy: A scoping review. Eur J Pharm Biopharm 2025; 208:114638. [PMID: 39832718 DOI: 10.1016/j.ejpb.2025.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
This scoping review focuses on drug delivery systems based on soft materials designed for the administration of drugs with anti-Trichomonas vaginalis activity. It primarily examines their use in addressing human trichomoniasis, exploring their physicochemical characteristics, in vitro and in vivo evaluation and identifying existing challenges and gaps. Given the economic burden and the One Health approach, formulations developed aiming at treating animal infections - cattle and poultry - were also discussed. The review involved searching electronic databases, such as PubMed, Scopus, and Web of Science, to find studies published until May 2024; out of the 103 articles retrieved, 18 fulfilled the eligibility criteria. This study investigated soft-nanoparticle formulations, including polymericand lipid-based systems, and their incorporation into suitable formulations for topical application, including hydrogels and polymeric films. Additionally, the discussion covered toxicology and highlighted the knowledge gaps related to the potential use of these formulations in humans. Anti-trichomonas soft nano-based formulations emerge as promising candidates for treating gynecological and animal infections. In conclusion, further preclinical testing is necessary, as none of the formulations have progressed to human clinical trials and have only been evaluated in animal models.
Collapse
Affiliation(s)
- Raul Edison Luna Lazo
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Fernando Miguel Stelmach Alves
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Eric Luiz Domingos
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Alexandre de Fatima Cobre
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Paulo Vitor Farago
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roberto Pontarolo
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Luana Mota Ferreira
- Centro de Estudos em Biofarmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Siyadatpanah A, Norouzi R, Mirzaei F, Haghirosadat BF, Nissapatorn V, Mitsuwan W, Nawaz M, Pereira ML, Hosseini SA, Montazeri M, Majdizadeh M, Almeida RS, Hemati M, Wilairatana P, Coutinho HDM. Green synthesis of nano-liposomes containing Bunium persicum and Trachyspermum ammi essential oils against Trichomonasvaginalis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:150-162. [PMID: 35864068 DOI: 10.1016/j.jmii.2022.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 05/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Trichomonas vaginalis, a parasitic flagellated protozoan, is one of the main non-viral sexually transmitted diseases worldwide. Treatment options for trichomoniasis are limited to nitroimidazole compounds. However, resistance to these drugs has been reported, which requires the development of new anti-Trichomonas agents that confer suitable efficacy and less toxicity. METHODS In the present work, we assessed the effectiveness of the liposomal system containing essential oils of Bunium persicum and Trachyspermum ammi against T. vaginalis in vitro. The chemical composition of B. persicum and T. ammi were analyzed using gas chromatography-mass spectrometry (GC-MS). Liposomal vesicles were prepared with phosphatidylcholine) 70%) and cholesterol)30%) using the thin-film method. The essential oils of B. persicum and T. ammi were loaded into the liposomes using the inactive loading method. Liposomal vesicles were made for two plants separately. Their physicochemical features were tested using Zeta-Sizer, AFM and SEM. The anti-Trichomonas activity was determined after 12 and 24 h of parasite cultures in TYI-S-33 medium. RESULTS After 12 and 24 h of administration, the IC50 of the B. persicum essential oil nano-liposomes induced 14.41 μg/mL and 45.19 μg/mL, respectively. The IC50 of T. ammi essential oil nano-liposomes induced 8.08 μg/mL and 25.81 μg/mL, respectively. CONCLUSIONS These data suggested that nano-liposomes of the essential oils of B. persicum and T. ammi may be a promising alternative to current treatments for Trichomonas infection.
Collapse
Affiliation(s)
- Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran; Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Farzaneh Mirzaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Bibi Fatemeh Haghirosadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand.
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, And Research Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, Thailand.
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Maria Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Majdizadeh
- Cellular and Molecular Biology, Department of Nano-Biotechnology, Nano-Biotech Foresight Company, Science & Technology Park of Yazd, Yazd, Iran.
| | - Ray S Almeida
- Department of Biological Chemistry, Regional University of Cariri - URCA, Crato, Brazil.
| | - Mahdie Hemati
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | |
Collapse
|
3
|
Fang L, Lu X, Cui C, Shi Q, Wang H. Metronidazole-loaded nanoparticulate thermoreversible gel for gynecologic infection of Trichomonas vaginalis. Am J Transl Res 2022; 14:4015-4023. [PMID: 35836901 PMCID: PMC9274572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Trichomoniasis is a common sexually-transmitted disease that is associated with increased perinatal morbidity and human immunodeficiency virus (HIV) transmission. This study aimed to develop a Metronidazole-loaded nanoparticulate thermoreversible gel for gynecological infection of Trichomonas vaginalis (T. vaginalis). METHODS The optimized nanoparticulate formulation was used in thermoreversible gel and characterized for physico-chemical properties, antiparasitic activity, and in vivo efficacy in the BALB/c mouse model. RESULT A nearly threefold rise in antiparasitic activity of the optimized formulation was observed as compared to that of regular gel. Formulation F5 successfully cured the trichomoniasis within 3 days, while regular gel and pure Metronidazole (MTDZ) failed to cure this infection (P<0.05). CONCLUSION The present investigation confirms the ability of thermoreversible gel containing nanoparticulate metronidazole againstthe infection by T. vaginalis. The developed gel could be an alternative to the existing drug delivery system for the treatment of trichomoniasis.
Collapse
Affiliation(s)
- Ling Fang
- Department of Dermatology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Xianyi Lu
- Department of Obstetrics and Gynecology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Chengjun Cui
- Department of Dermatology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Qifeng Shi
- Department of Pathology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Haojue Wang
- Department of Obstetrics and Gynecology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| |
Collapse
|
4
|
Santos HLC, Rebello KM. An Overview of Mucosa-Associated Protozoa: Challenges in Chemotherapy and Future Perspectives. Front Cell Infect Microbiol 2022; 12:860442. [PMID: 35548465 PMCID: PMC9084232 DOI: 10.3389/fcimb.2022.860442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections caused by protozoans that infect the mucosal surfaces are widely neglected worldwide. Collectively, Entamoeba histolytica, Giardia lamblia, Cryptosporidium spp. and Trichomonas vaginalis infect more than a billion people in the world, being a public health problem mainly in developing countries. However, the exact incidence and prevalence data depend on the population examined. These parasites ultimately cause pathologies that culminate in liver abscesses, malabsorption syndrome, vaginitis, and urethritis, respectively. Despite this, the antimicrobial agents currently used to treat these diseases are limited and often associated with adverse side effects and refractory cases due to the development of resistant parasites. The paucity of drug treatments, absence of vaccines and increasing problems of drug resistance are major concerns for their control and eradication. Herein, potential candidates are reviewed with the overall aim of determining the knowledge gaps and suggest future perspectives for research. This review focuses on this public health problem and focuses on the progress of drug repositioning as a potential strategy for the treatment of mucosal parasites.
Collapse
Affiliation(s)
- Helena Lucia Carneiro Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
5
|
Al-Ardi MH. Anti-parasitic activity of nano Citrullus colocynthis and nano Capparis spinose against Trichomonas vaginalis in vitro. J Parasit Dis 2021; 45:845-850. [PMID: 34475668 PMCID: PMC8368443 DOI: 10.1007/s12639-021-01371-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022] Open
Abstract
The use of plant extracts and the benefit of their unique properties in treating various pathogens is the return to mother nature, and an attempt to overcome the problems of side effects resulting from the use of chemical drugs and the ability of some pathogens to resist these drugs. Nanotechnology has strengthened the ability of drugs to reach the target and reduced the size and amount of dose needed for treatment. Nano-extracts of Citrullus colocynthis and Capparis spinosa at concentrations of (100, 250 and 500) ppm prepared to the treatment Trichomonas vaginalis in vitro at the time (12, 24, 72) h. Results compared with the use of 0.1% of metronidazole (500 mg). The results showed that the concentrations (100, 250, 500) ppm of C. colocynthis had an inhibitory activity for the growth rate (43.77, 69.15, 89.89) at the time (12, 24 and 72) h, respectively. The inhibitory activity of C. spinosa was (43.18, 67.41, 87.04) at the same time and concentration, compared with metronidazole (43.47, 70.40, 87.04) at the same time. Neither plants showed severe effects in hemolysis. From the results, it can be concluded that either plant can be used as an alternative to metronidazole after completing human and animal tests.
Collapse
Affiliation(s)
- Musafer H. Al-Ardi
- The General Directorate for Education\Al-Qadisiyah, Ministry of Education, Al-Qadisiyah, Iraq
| |
Collapse
|
6
|
Sharifi-Rad J, Quispe C, Rahavian A, Pereira Carneiro JN, Rocha JE, Alves Borges Leal AL, Bezerra Morais Braga MF, Melo Coutinho HD, Ansari Djafari A, Alarcón-Zapata P, Martorell M, Antika G, Tumer TB, Cruz-Martins N, Helon P, Paprocka P, Koch W, Docea AO, Calina D. Bioactive Compounds as Potential Agents for Sexually Transmitted Diseases Management: A Review to Explore Molecular Mechanisms of Action. Front Pharmacol 2021; 12:674682. [PMID: 34504422 PMCID: PMC8421529 DOI: 10.3389/fphar.2021.674682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Sexually transmitted diseases (STDs) are produced by pathogens like bacteria, fungi, parasites, and viruses, and may generate severe health problems such as cancer, ulcers, and even problems in the newborn. This narrative review aims to present updated information about the use of natural bioactive compounds for the prevention and treatment of sexually transmitted infections. A search of the literature was performed using databases and search engines such as PubMed, Scopus, Google Scholar and Science Direct. From the pharmacotherapeutic management point of view, any strategies for prevention should contain medical approaches. The bioactive compounds obtained from natural products have shown biological effects against different microorganisms for the treatment of these diseases. The main results showed antimicrobial, antiprotozoal, antifungal and antiviral effects such as HIV. Also, the molecular mechanisms, signalling pathways and action targets of natural compounds were highlighted, thus justifying bacterial and antifungal inhibition, apoptosis or reduction of viral replication. From the data of our study, we can conclude that natural compounds may be a significant source for adjuvant drugs / complementary therapies in the treatment of STDs. With all these benefits, the future must conduct extensive clinical trials and the development of pharmaceutical nanotechnologies for a greater therapeutic effect.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Amirhossein Rahavian
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | | | | | | | - Anahita Ansari Djafari
- Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Gizem Antika
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University of Kielce, Sandomierz, Poland
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
7
|
Sabbagh HAK, Hussein-Al-Ali SH, Hussein MZ, Abudayeh Z, Ayoub R, Abudoleh SM. A Statistical Study on the Development of Metronidazole-Chitosan-Alginate Nanocomposite Formulation Using the Full Factorial Design. Polymers (Basel) 2020; 12:polym12040772. [PMID: 32244671 PMCID: PMC7240564 DOI: 10.3390/polym12040772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 11/16/2022] Open
Abstract
The goal of this study was to develop and statistically optimize the metronidazole (MET), chitosan (CS) and alginate (Alg) nanoparticles (NP) nanocomposites (MET-CS-AlgNPs) using a (21 × 31 × 21) × 3 = 36 full factorial design (FFD) to investigate the effect of chitosan and alginate polymer concentrations and calcium chloride (CaCl2) concentration ondrug loading efficiency(LE), particle size and zeta potential. The concentration of CS, Alg and CaCl2 were taken as independent variables, while drug loading, particle size and zeta potential were taken as dependent variables. The study showed that the loading efficiency and particle size depend on the CS, Alg and CaCl2 concentrations, whereas zeta potential depends only on the Alg and CaCl2 concentrations. The MET-CS-AlgNPs nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and in vitro drug release studies. XRD datashowed that the crystalline properties of MET changed to an amorphous-like pattern when the nanocomposites were formed.The XRD pattern of MET-CS-AlgNPs showed reflections at 2θ = 14.2° and 22.1°, indicating that the formation of the nanocompositesprepared at the optimum conditions havea mean diameter of (165±20) nm, with a MET loading of (46.0 ± 2.1)% and a zeta potential of (−9.2 ± 0.5) mV.The FTIR data of MET-CS-AlgNPs showed some bands of MET, such as 3283, 1585 and 1413 cm−1, confirming the presence of the drug in the MET-CS-AlgNPs nanocomposites. The TGA for the optimized sample of MET-CS-AlgNPs showed a 70.2% weight loss compared to 55.3% for CS-AlgNPs, and the difference is due to the incorporation of MET in the CS-AlgNPs for the formation of MET-CS-AlgNPs nanocomposites. The release of MET from the nanocomposite showed sustained-release properties, indicating the presence of an interaction between MET and the polymer. The nanocomposite shows a smooth surface and spherical shape. The release profile of MET from its MET-CS-AlgNPs nanocomposites was found to be governed by the second kinetic model (R2 between 0.956–0.990) with more than 90% release during the first 50 h, which suggests that the release of the MET drug can be extended or prolonged via the nanocomposite formulation.
Collapse
Affiliation(s)
- Hazem Abdul Kader Sabbagh
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Isra University, Amman 11622, Jordan; (H.A.K.S.); (Z.A.); (R.A.); (S.M.A.)
| | - Samer Hasan Hussein-Al-Ali
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Isra University, Amman 11622, Jordan; (H.A.K.S.); (Z.A.); (R.A.); (S.M.A.)
- Department of Chemistry, Faculty of Science, Isra University, Amman 11622, Jordan
- Correspondence: (S.H.H.-A.-A.); (M.Z.H.)
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400UPM Serdang, Selangor, Malaysia
- Correspondence: (S.H.H.-A.-A.); (M.Z.H.)
| | - Zead Abudayeh
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Isra University, Amman 11622, Jordan; (H.A.K.S.); (Z.A.); (R.A.); (S.M.A.)
| | - Rami Ayoub
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Isra University, Amman 11622, Jordan; (H.A.K.S.); (Z.A.); (R.A.); (S.M.A.)
| | - Suha Mujahed Abudoleh
- Department of Basic Pharmaceutical Science, Faculty of Pharmacy, Isra University, Amman 11622, Jordan; (H.A.K.S.); (Z.A.); (R.A.); (S.M.A.)
| |
Collapse
|
8
|
Küng E, Fürnkranz U, Walochnik J. Chemotherapeutic options for the treatment of human trichomoniasis. Int J Antimicrob Agents 2018; 53:116-127. [PMID: 30612993 DOI: 10.1016/j.ijantimicag.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 01/08/2023]
Abstract
Trichomonas vaginalis is the causative agent of the most common non-viral sexually transmitted disease worldwide. The infection may be associated with severe complications, including infertility, preterm labour, cancer and an increased risk of human immunodeficiency virus (HIV) transmission. Treatment remains almost exclusively based on 5-nitroimidazoles, but resistance is on the rise. This article provides an overview of clinically evaluated systemic and topical treatment options for human trichomoniasis and summarises the current state of knowledge on various herbal, semisynthetic and synthetic compounds evaluated for their anti-Trichomonas efficacy in vitro.
Collapse
Affiliation(s)
- Erik Küng
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Ursula Fürnkranz
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria.
| |
Collapse
|