1
|
Shibata M, Kayama Y, Takizawa T, Ibata K, Shimizu T, Yuzaki M, Suzuki N, Nakahara J. Resilience to capsaicin-induced mitochondrial damage in trigeminal ganglion neurons. Mol Pain 2021; 16:1744806920960856. [PMID: 32985330 PMCID: PMC7536481 DOI: 10.1177/1744806920960856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Capsaicin is an agonist of transient receptor potential cation channel subfamily V member 1 (TRPV1). Strong TRPV1 stimulation with capsaicin causes mitochondrial damage in primary sensory neurons. However, the effect of repetitive and moderate exposure to capsaicin on the integrity of neuronal mitochondria remains largely unknown. Our electron microscopic analysis revealed that repetitive stimulation of the facial skin of mice with 10 mM capsaicin induced short-term damage to the mitochondria in small-sized trigeminal ganglion neurons. Further, capsaicin-treated mice exhibited decreased sensitivity to noxious heat stimulation, indicating TRPV1 dysfunction, in parallel with the mitochondrial damage in the trigeminal ganglion neurons. To analyze the capsaicin-induced mitochondrial damage and its relevant cellular events in detail, we performed cell-based assays using TRPV1-expressing PC12 cells. Dose-dependent capsaicin-mediated mitochondrial toxicity was observed. High doses of capsaicin caused rapid destruction of mitochondrial internal structure, while low doses induced mitochondrial swelling. Further, capsaicin induced a dose-dependent loss of mitochondria and autophagy-mediated degradation of mitochondria (mitophagy). Concomitantly, transcriptional upregulation of mitochondrial proteins, cytochrome c oxidase subunit IV, Mic60/Mitofilin, and voltage-dependent anion channel 1 was observed, which implied induction of mitochondrial biogenesis to compensate for the loss of mitochondria. Collectively, although trigeminal ganglion neurons transiently exhibit mitochondrial damage and TRPV1 dysfunction following moderate capsaicin exposure, they appear to be resilient to such a challenge. Our in vitro data show a dose-response relationship in capsaicin-mediated mitochondrial toxicity. We postulate that induction of mitophagy and mitochondrial biogenesis in response to capsaicin stimulation play important roles in repairing the damaged mitochondrial system.
Collapse
Affiliation(s)
- Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, Japan
| | - Yohei Kayama
- Department of Neurology, Keio University School of Medicine, Japan
| | - Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Japan
| | - Keiji Ibata
- Department of Physiology, Keio University School of Medicine, Japan.,Department of Physiology, St. Marianna Medical University, Japan
| | | | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Japan
| |
Collapse
|
2
|
Chang B, Guan H, Wang X, Chen Z, Zhu W, Wei X, Li S. Cox4i2 Triggers an Increase in Reactive Oxygen Species, Leading to Ferroptosis and Apoptosis in HHV7 Infected Schwann Cells. Front Mol Biosci 2021; 8:660072. [PMID: 34026834 PMCID: PMC8138133 DOI: 10.3389/fmolb.2021.660072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Emerging evidence suggests that reactive oxygen species (ROS) play a significant role in the pathogenesis of peripheral nerve damage. Our previous study indicated that human herpesvirus 7 (HHV7) induces Bell’s palsy. However, the specific mechanism underlying the effects of ROS in HHV7 infection-induced facial nerve damage is unknown. In this study, we established a rat FN model by inoculating an HHV7 virus solution. The facial grading score and LuxolFastBlue (LFB) staining were used to assess the success of the model. Using mRNA-sequencing analysis, we found that the expression of Complex IV Subunit 4 Isoform 2 (Cox4i2) increased in infected Schwann cells (SCs). Cox4i2 was suggested to increase COX activity, thereby promoting ROS production. The changes in the endogenous oxidant and antioxidant system were assessed, and the results showed that oxidative stress increased after HHV7 infection in vivo and in vitro. However, we found that oxidative injury was relieved after the transfection of shCox4i2 in HHV7-treated SCs by evaluating cell death, cell proliferation, and the ROS level as well as the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH). Furthermore, we hypothesised that Cox4i2 loss would attenuate HHV7-induced ferroptosis and apoptosis, which are closely related to ROS in SCs. Our research illustrated that the knockdown of Cox4i2 suppresses HHV7-induced RSC96 cell ferroptosis as well as apoptosis via the ERK signalling pathway. Overall, several in vitro and in vivo methods were adopted in this study to reveal the new mechanism of ROS-induced and Cox4i2-mediated apoptosis and ferroptosis in HHV7 infected SCs.
Collapse
Affiliation(s)
- Bowen Chang
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haochen Guan
- Department of Nephrology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyi Wang
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Chen
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wanchun Zhu
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Wei
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shiting Li
- Department of Neurosurgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Lennol MP, Canelles S, Guerra-Cantera S, Argente J, García-Segura LM, de Ceballos ML, Chowen JA, Frago LM. Amyloid-β 1-40 differentially stimulates proliferation, activation of oxidative stress and inflammatory responses in male and female hippocampal astrocyte cultures. Mech Ageing Dev 2021; 195:111462. [PMID: 33609535 DOI: 10.1016/j.mad.2021.111462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and has a higher incidence in women. The main component of the senile plaques characteristic of AD is amyloid-beta (Aβ), with surrounding astrocytes contributing to the degenerative process. We hypothesized that the sex difference in the incidence of AD could be partially due to differential astrocytic responses to Aβ. Thus, the effect of Aβ1-40 on cell viability, the inflammatory response, and oxidative status was studied in cultures of hippocampal astrocytes from male and female rats. Aβ1-40 increased astrocyte viability in both female and male cultures by activating proliferation and survival pathways. Pro-inflammatory and anti-inflammatory responses were induced in astrocytes from both sexes. Aβ1-40 did not affect endoplasmic reticulum stress although it induced oxidative stress in male and female astrocytes. Interestingly, male astrocytes had an increase in cell number and significantly lower cell death in response to Aβ1-40. Conversely, astrocytes from females displayed a greater inflammatory response after the Aβ1-40 challenge. These results suggest that the inflammatory and oxidative environment induced by Aβ1-40 in female astrocytes may contribute to enhance the vulnerability to AD and warrants further studies to unveil the mechanisms underlying sex differences in astrocytic responses.
Collapse
Affiliation(s)
- Matthew P Lennol
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Santiago Guerra-Cantera
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Jesús Argente
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain; IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, Madrid, 28049, Spain
| | - Luis Miguel García-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, Madrid, 28002, Spain; CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - María L de Ceballos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, Madrid, 28002, Spain; CIBER de Investigación Biomédica en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain; IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, Madrid, 28049, Spain
| | - Laura M Frago
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain.
| |
Collapse
|
4
|
Jaber SM, Bordt EA, Bhatt NM, Lewis DM, Gerecht S, Fiskum G, Polster BM. Sex differences in the mitochondrial bioenergetics of astrocytes but not microglia at a physiologically relevant brain oxygen tension. Neurochem Int 2018; 117:82-90. [PMID: 28888963 PMCID: PMC5839942 DOI: 10.1016/j.neuint.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022]
Abstract
Biological sex is thought to influence mitochondrial bioenergetic function. Previous respiration measurements examining brain mitochondrial sex differences were made at atmospheric oxygen using isolated brain mitochondria. Oxygen is 160 mm Hg (21%) in the atmosphere, while the oxygen tension in the brain generally ranges from ∼5 to 45 mm Hg (∼1-6% O2). This study tested the hypothesis that sex and/or brain physiological oxygen tension influence the mitochondrial bioenergetic properties of primary rat cortical astrocytes and microglia. Oxygen consumption was measured with a Seahorse XF24 cell respirometer in an oxygen-controlled environmental chamber. Strikingly, male astrocytes had a higher maximal respiration than female astrocytes when cultured and assayed at 3% O2. Three percent O2 yielded a low physiological dissolved O2 level of ∼1.2% (9.1 mm Hg) at the cell monolayer during culture and 1.2-3.0% O2 during assays. No differences in bioenergetic parameters were observed between male and female astrocytes at 21% O2 (dissolved O2 of ∼19.7%, 150 mm Hg during culture) or between either of these cell populations and female astrocytes at 3% O2. In contrast to astrocytes, microglia showed no sex differences in mitochondrial bioenergetic parameters at either oxygen level, regardless of whether they were non-stimulated or activated to a proinflammatory state. There were also no O2- or sex-dependent differences in proinflammatory TNF-α or IL-1β cytokine secretion measured at 18 h activation. Overall, results reveal an intriguing sex variance in astrocytic maximal respiration that requires additional investigation. Findings also demonstrate that sex differences can be masked by conducting experiments at non-physiological O2.
Collapse
Affiliation(s)
- Sausan M Jaber
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Evan A Bordt
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Niraj M Bhatt
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Daniel M Lewis
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Shaffer Hall 200C, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Shaffer Hall 200C, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Shaffer Hall 200C, Baltimore, MD 21218, USA
| | - Gary Fiskum
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Department of Anesthesiology, and the Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 685 W. Baltimore ST., MSTF 5-34, Baltimore, MD, 21201, USA.
| |
Collapse
|
5
|
Velez C, Figueira E, Soares AMVM, Freitas R. Effects of seawater temperature increase on economically relevant native and introduced clam species. MARINE ENVIRONMENTAL RESEARCH 2017; 123:62-70. [PMID: 27951468 DOI: 10.1016/j.marenvres.2016.11.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/25/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
As a consequence of climate change, global warming is expected to increase during the 21st century. Taking this into account, the impact of rising temperatures on the native Ruditapes decussatus and introduced R. philippinarum bivalve species was assessed, through biochemical and mRNA transcription analyses. Our findings showed that at 21 °C the electron transport system and antioxidant enzyme activity, as well as the expression of Hsp70 gene were induced in R. decussatus when compared with 17 °C. On the other hand, at 25 °C results suggested that R. decussatus closed their valves during short periods, as a behavioral strategy, down-regulating the expression of genes associated with mitochondrial metabolism (Cox-1 and 16S) and chaperone function (Hsp70) compared with organisms at 17 °C. In addition, the introduced species (R. philippinarum) increased the electron transport system and antioxidant activities, as well as gene expression of antioxidant enzymes and molecular chaperone (Hsp70) at 21 °C. However, antioxidant mechanisms were not enough to prevent lipid membrane damages at 21 °C. At 25 °C R. philippinarum presented increased electron transport system and antioxidant activity, as well as the expression of genes associated with apoptosis regulation and molecular chaperone. Overall, the present findings indicate that in a global warming scenario both species are able to induce different mechanisms to mitigate the impacts of temperature increase.
Collapse
Affiliation(s)
- Cátia Velez
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Schiffer TA, Peleli M, Sundqvist ML, Ekblom B, Lundberg JO, Weitzberg E, Larsen FJ. Control of human energy expenditure by cytochrome c oxidase subunit IV-2. Am J Physiol Cell Physiol 2016; 311:C452-61. [PMID: 27486093 DOI: 10.1152/ajpcell.00099.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/09/2016] [Indexed: 01/12/2023]
Abstract
Resting metabolic rate (RMR) in humans shows pronounced individual variations, but the underlying molecular mechanism remains elusive. Cytochrome c oxidase (COX) plays a key role in control of metabolic rate, and recent studies of the subunit 4 isoform 2 (COX IV-2) indicate involvement in the cellular response to hypoxia and oxidative stress. We evaluated whether the COX subunit IV isoform composition may explain the pronounced individual variations in resting metabolic rate (RMR). RMR was determined in healthy humans by indirect calorimetry and correlated to levels of COX IV-2 and COX IV-1 in vastus lateralis. Overexpression and knock down of the COX IV isoforms were performed in primary myotubes followed by evaluation of the cell respiration and production of reactive oxygen species. Here we show that COX IV-2 protein is constitutively expressed in human skeletal muscle and strongly correlated to RMR. Primary human myotubes overexpressing COX IV-2 displayed markedly (>60%) lower respiration, reduced (>50%) cellular H2O2 production, higher resistance toward both oxidative stress, and severe hypoxia compared with control cells. These results suggest an important role of isoform COX IV-2 in the control of energy expenditure, hypoxic tolerance, and mitochondrial ROS homeostasis in humans.
Collapse
Affiliation(s)
- Tomas A Schiffer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Peleli
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michaela L Sundqvist
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Ekblom
- Åstrand Laboratory of Work Physiology, Swedish School of Sport and Health Sciences, Stockholm, Sweden; and
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Anesthesia & Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Filip J Larsen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Åstrand Laboratory of Work Physiology, Swedish School of Sport and Health Sciences, Stockholm, Sweden; and
| |
Collapse
|
7
|
Jin Z, Wu J, Yan LJ. Chemical Conditioning as an Approach to Ischemic Stroke Tolerance: Mitochondria as the Target. Int J Mol Sci 2016; 17:351. [PMID: 27005615 PMCID: PMC4813212 DOI: 10.3390/ijms17030351] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022] Open
Abstract
It is well established that the brain can be prepared to resist or tolerate ischemic stroke injury, and mitochondrion is a major target for this tolerance. The preparation of ischemic stroke tolerance can be achieved by three major approaches: ischemic conditioning, hypoxic conditioning and chemical conditioning. In each conditioning approach, there are often two strategies that can be used to achieve the conditioning effects, namely preconditioning (Pre-C) and postconditioning (Post-C). In this review, we focus on chemical conditioning of mitochondrial proteins as targets for neuroprotection against ischemic stroke injury. Mitochondrial targets covered include complexes I, II, IV, the ATP-sensitive potassium channel (mitoKATP), adenine dinucleotide translocase (ANT) and the mitochondrial permeability transition pore (mPTP). While numerous mitochondrial proteins have not been evaluated in the context of chemical conditioning and ischemic stroke tolerance, the paradigms and approaches reviewed in this article should provide general guidelines on testing those mitochondrial components that have not been investigated. A deep understanding of mitochondria as the target of chemical conditioning for ischemic stroke tolerance should provide valuable insights into strategies for fighting ischemic stroke, a leading cause of death in the world.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
8
|
Das D, Medina B, Baktir MA, Mojabi FS, Fahimi A, Ponnusamy R, Salehi A. Increased incidence of intermittent hypoxemia in the Ts65Dn mouse model of Down syndrome. Neurosci Lett 2015; 604:91-6. [PMID: 26240993 DOI: 10.1016/j.neulet.2015.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/13/2023]
Abstract
In addition to nervous system, cardiovascular and respiratory systems are primarily affected in Down syndrome (DS). The Ts65Dn mouse model is widely used to recapitulate cognitive dysfunction in DS. While these mice consistently show failure in learning and memory along with functional and structural abnormalities in the hippocampal region, the underlying mechanisms behind cognitive dysfunction remain to be fully elucidated. Convergent evidence implicates chronic episodes of hypoxemia in cognitive dysfunction in people with DS. Using an infra-red detection system to assess oxygen saturation in free-moving mice, we assessed arterial blood oxygenation in both adolescent and adult Ts65Dn mice and found a significant increase in the incidence of hypoxemia in both groups. Notably, the severity of hypoxemia increased during the dark cycle, suggesting a link between hypoxemia and increased motor activity. Postmortem analysis showed significant increase in the expression of mitochondrial Cox4i2, the terminal enzyme of the mitochondrial respiratory chain and oxygen response element. Altogether these data suggest early and chronic occurrence of hypoxemia in the Ts65Dn mouse model of DS, which can contribute to cognitive dysfunction in these mice.
Collapse
Affiliation(s)
- Devsmita Das
- VA Palo Alto Health Care System, Palo Alto, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA 94305, USA
| | - Brian Medina
- VA Palo Alto Health Care System, Palo Alto, CA 94305, USA
| | | | - Fatemeh S Mojabi
- VA Palo Alto Health Care System, Palo Alto, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA 94305, USA
| | - Atoossa Fahimi
- VA Palo Alto Health Care System, Palo Alto, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA 94305, USA
| | - Ravikumar Ponnusamy
- VA Palo Alto Health Care System, Palo Alto, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA 94305, USA
| | - Ahmad Salehi
- VA Palo Alto Health Care System, Palo Alto, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA 94305, USA.
| |
Collapse
|
9
|
Kim S, Seo JW, Oh SB, Kim SH, Kim I, Suh N, Lee JY. Disparate roles of zinc in chemical hypoxia-induced neuronal death. Front Cell Neurosci 2015; 9:1. [PMID: 25667569 PMCID: PMC4304355 DOI: 10.3389/fncel.2015.00001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/03/2015] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has provided a causative role of zinc (Zn2+) in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2), deferoxamine (3 mM DFX), and sodium azide (2 mM NaN3), we evaluated whether Zn2+ is involved in hypoxic neuronal death. The hypoxic chemicals rapidly elicited intracellular Zn2+ release/accumulation in viable neurons. The immediate addition of the Zn2+ chelator, CaEDTA or N,N,N’N’-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN), prevented the intracellular Zn2+ load and CoCl2-induced neuronal death, but neither 3 hour later Zn2+ chelation nor a non-Zn2+ chelator ZnEDTA (1 mM) demonstrated any effects. However, neither CaEDTA nor TPEN rescued neurons from cell death following DFX- or NaN3-induced hypoxia, whereas ZnEDTA rendered them resistant to the hypoxic injury. Instead, the immediate supplementation of Zn2+ rescued DFX- and NaN3-induced neuronal death. The iron supplementation also afforded neuroprotection against DFX-induced hypoxic injury. Thus, although intracellular Zn2+ release/accumulation is common during chemical hypoxia, Zn2+ might differently influence the subsequent fate of neurons; it appears to play a neurotoxic or neuroprotective role depending on the hypoxic chemical used. These results also suggest that different hypoxic chemicals may induce neuronal death via distinct mechanisms.
Collapse
Affiliation(s)
- Sujeong Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul South Korea
| | - Jung-Woo Seo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul South Korea
| | - Shin Bi Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul South Korea
| | - So Hee Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul South Korea
| | - Inki Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul South Korea
| | - Nayoung Suh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul South Korea
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul South Korea ; Department of Neurology, University of Ulsan College of Medicine, Seoul South Korea
| |
Collapse
|
10
|
Capurro A, Bodea LG, Schaefer P, Luthi-Carter R, Perreau VM. Computational deconvolution of genome wide expression data from Parkinson's and Huntington's disease brain tissues using population-specific expression analysis. Front Neurosci 2015; 8:441. [PMID: 25620908 PMCID: PMC4288238 DOI: 10.3389/fnins.2014.00441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD.
Collapse
Affiliation(s)
- Alberto Capurro
- Department of Cell Physiology and Pharmacology, University of Leicester Leicester, UK
| | - Liviu-Gabriel Bodea
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, University of Bonn Bonn, Germany ; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland St Lucia, QLD, Australia
| | | | - Ruth Luthi-Carter
- Department of Cell Physiology and Pharmacology, University of Leicester Leicester, UK
| | - Victoria M Perreau
- The Bioinformatics Core and The Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| |
Collapse
|
11
|
Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 2014; 94:1077-98. [PMID: 25287860 DOI: 10.1152/physrev.00041.2013] [Citation(s) in RCA: 654] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Astrocytes are the most abundant cells in the central nervous system (CNS) that provide nutrients, recycle neurotransmitters, as well as fulfill a wide range of other homeostasis maintaining functions. During the past two decades, astrocytes emerged also as increasingly important regulators of neuronal functions including the generation of new nerve cells and structural as well as functional synapse remodeling. Reactive gliosis or reactive astrogliosis is a term coined for the morphological and functional changes seen in astroglial cells/astrocytes responding to CNS injury and other neurological diseases. Whereas this defensive reaction of astrocytes is conceivably aimed at handling the acute stress, limiting tissue damage, and restoring homeostasis, it may also inhibit adaptive neural plasticity mechanisms underlying recovery of function. Understanding the multifaceted roles of astrocytes in the healthy and diseased CNS will undoubtedly contribute to the development of treatment strategies that will, in a context-dependent manner and at appropriate time points, modulate reactive astrogliosis to promote brain repair and reduce the neurological impairment.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Permeability transition pore-dependent and PARP-mediated depletion of neuronal pyridine nucleotides during anoxia and glucose deprivation. J Bioenerg Biomembr 2014; 47:53-61. [PMID: 25341378 DOI: 10.1007/s10863-014-9588-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Exposure of rat cortical neurons to combined oxygen and glucose deprivation results in loss of NAD(P)H autofluorescence that is only partially reversible following restoration of oxygen and glucose, suggesting catabolism of pyridine nucleotides. This study tested the hypothesis that metabolic inhibition caused by cyanide-induced chemical anoxia plus glucose deprivation promotes both release of mitochondrial NAD(H) in response to opening of the permeability transition pore (PTP) and NAD(P)(H) degradation through activation of poly (ADP-ribose) polymerase (PARP). The NAD(P)H autofluorescence of rat neonatal cortical neurons was monitored during and following acute (10-30 min) exposure to the respiratory inhibitor, cyanide, in the absence and presence of glucose. Because nitric oxide-derived peroxynitrite is a known activator of PARP, we additionally assessed the effect of a nitric oxide generating agent on the NAD(P)H autofluorescence response to chemical anoxia plus glucose deprivation. Cyanide induced a rapid increase in autofluorescence, followed by a steady decline promoted by the presence of nitric oxide. This decline was primarily due to NAD(H) catabolism, as verified by measurements of total NAD(H) present in cellular extracts. Catabolism was partially blocked by an inhibitor of PARP, by a PTP inhibitor, and by either glucose or pyruvate as a source of reducing power. Overall, data suggest that metabolic, oxidative, and nitrosative stress during in vitro neuronal anoxia and glucose deprivation result in release of mitochondrial pyridine nucleotides in response to PTP opening and rapid, extensive NAD(H) degradation mediated by PARP activation. These events may contribute to the metabolic dysfunction that occurs in vivo during cerebral ischemia and reperfusion and therefore represent prime targets for neuroprotection.
Collapse
|
13
|
Thrombin-Facilitated Efflux of d-[3H]-Aspartate from Cultured Astrocytes and Neurons Under Hyponatremia and Chemical Ischemia. Neurochem Res 2014; 39:1219-31. [DOI: 10.1007/s11064-014-1300-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 01/17/2023]
|
14
|
Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 2014; 565:30-8. [PMID: 24406153 DOI: 10.1016/j.neulet.2013.12.071] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/21/2013] [Accepted: 12/29/2013] [Indexed: 11/16/2022]
Abstract
Astrocyte activation and reactive gliosis accompany most of the pathologies in the brain, spinal cord, and retina. Reactive gliosis has been described as constitutive, graded, multi-stage, and evolutionary conserved defensive astroglial reaction [Verkhratsky and Butt (2013) In: Glial Physiology and Pathophysiology]. A well- known feature of astrocyte activation and reactive gliosis are the increased production of intermediate filament proteins (also known as nanofilament proteins) and remodeling of the intermediate filament system of astrocytes. Activation of astrocytes is associated with changes in the expression of many genes and characteristic morphological hallmarks, and has important functional consequences in situations such as stroke, trauma, epilepsy, Alzheimer's disease (AD), and other neurodegenerative diseases. The impact of astrocyte activation and reactive gliosis on the pathogenesis of different neurological disorders is not yet fully understood but the available experimental evidence points to many beneficial aspects of astrocyte activation and reactive gliosis that range from isolation and sequestration of the affected region of the central nervous system (CNS) from the neighboring tissue that limits the lesion size to active neuroprotection and regulation of the CNS homeostasis in times of acute ischemic, osmotic, or other kinds of stress. The available experimental data from selected CNS pathologies suggest that if not resolved in time, reactive gliosis can exert inhibitory effects on several aspects of neuroplasticity and CNS regeneration and thus might become a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - Ulrika Wilhelmsson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Woo S, Denis V, Won H, Shin K, Lee G, Lee TK, Yum S. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zool Stud 2013. [DOI: 10.1186/1810-522x-52-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
In this study, we investigated transcription and enzyme level responses of mussels Mytilus galloprovincialis exposed to hypoxic conditions. Genes for catalase (CAT), cytochrome P450, glutathione S-transferase (GST), metallothionein, superoxide dismutase (SOD), cytochrome c oxidase subunit 1 (COX-1), and NADH dehydrogenase subunit 2 were selected for study. Transcriptional changes were investigated in mussels exposed to hypoxia for 24 and 48 h and were compared to changes in control mussels maintained at normal oxygen levels. Activities of CAT, GST, and SOD enzymes, and lipid peroxidation (LPO) were also investigated in mussels following exposure to hypoxia for 24, 48, and 72 h.
Results
Relative to the control group, the CAT activity decreased in all hypoxia treatments, while the activity of GST significantly increased in mussels exposed to hypoxia for 24 and 48 h, but decreased in those exposed for 72 h. The LPO levels were significantly higher in mussels in the 24- and 48-h hypoxia treatments than those in the control mussels, but there was no significant change in the SOD activities among all hypoxia treatments. Messenger RNA levels for the CAT, cytochrome P450, GST, metallothionein, and SOD genes were not significantly affected by hypoxic conditions for 48 h, but the expressions of the COX-1 and NADH dehydrogenase subunit 2 genes were significantly repressed in mussels in both the 24- and 48-h exposure treatments.
Conclusions
These results demonstrate the transcriptional stability and changes among several genes related to oxidative stress under oxygen-depletion conditions in M. galloprovincialis and provide useful information about the modulation of antioxidant enzyme activities induced by hypoxia in a marine animal.
Collapse
|
16
|
Glycine Intracerebroventricular Administration Disrupts Mitochondrial Energy Homeostasis in Cerebral Cortex and Striatum of Young Rats. Neurotox Res 2013; 24:502-11. [DOI: 10.1007/s12640-013-9396-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/17/2013] [Accepted: 04/23/2013] [Indexed: 01/17/2023]
|
17
|
Histological study on the effect of sodium azide on the corpus striatum of albino rats and the possible protective role of L-carnitine. ACTA ACUST UNITED AC 2013. [DOI: 10.1097/01.ehx.0000424089.76006.d7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Arnold S. Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:305-39. [PMID: 22729864 DOI: 10.1007/978-1-4614-3573-0_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A hallmark of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and stroke is a malfunction of mitochondria including cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. COX is ascribed a key role based on mainly two regulatory mechanisms. These are the expression of isoforms and the binding of specific allosteric factors to nucleus--encoded subunits. These characteristics represent a unique feature of COX compared with the other respiratory chain complexes. Additional regulatory mechanisms, such as posttranslational modification, substrate availability, and allosteric feedback inhibition by products of the COX reaction, control the enzyme activity in a complex way. In many tissues and cell types, COX represents the rate-limiting enzyme of the respiratory chain which further emphasizes the impact of the regulation of COX as a central site for regulating energy metabolism and oxidative stress. Two of the best-analyzed regulatory mechanisms of COX to date are the allosteric feedback inhibition of the enzyme by its indirect product ATP and the expression of COX subunit IV isoforms. This ATP feedback inhibition of COX requires the expression of COX isoform IV-1. At high ATP/ADP ratios, ADP is exchanged for ATP at the matrix side of COX IV-1 leading to an inhibition of COX activity, thus enabling COX to sense the energy level and to adjust ATP synthesis to energy demand. However, under hypoxic, toxic, and degenerative conditions, COX isoform IV-2 expression is up-regulated and exchanged for COX IV-1 in the enzyme complex. This COX IV isoform switch causes an abolition of the allosteric ATP feedback inhibition of COX and consequently the loss of sensing the energy level. Thus, COX activity is increased leading to higher levels of ATP in neural cells independently of the cellular energy level. Concomitantly, ROS production is increased. Thus, under pathological conditions, neural cells are provided with ATP to meet the energy demand, but at the expense of elevated oxidative stress. This mechanism explains the functional relevance of COX subunit IV isoform expression for cellular energy sensing, ATP production, and oxidative stress levels. This, in turn, affects neural cell function, signaling, and -survival. Thus, COX is a crucial factor in etiology, progression, and prevalence of numerous human neurodegenerative diseases and represents an important target for developing diagnostic and therapeutic tools against those diseases.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute for Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany.
| |
Collapse
|
19
|
Hüttemann M, Lee I, Gao X, Pecina P, Pecinova A, Liu J, Aras S, Sommer N, Sanderson TH, Tost M, Neff F, Aguilar-Pimentel JA, Becker L, Naton B, Rathkolb B, Rozman J, Favor J, Hans W, Prehn C, Puk O, Schrewe A, Sun M, Höfler H, Adamski J, Bekeredjian R, Graw J, Adler T, Busch DH, Klingenspor M, Klopstock T, Ollert M, Wolf E, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Weissmann N, Doan JW, Bassett DJP, Grossman LI. Cytochrome c oxidase subunit 4 isoform 2-knockout mice show reduced enzyme activity, airway hyporeactivity, and lung pathology. FASEB J 2012; 26:3916-30. [PMID: 22730437 DOI: 10.1096/fj.11-203273] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial electron transport chain. The purpose of this study was to analyze the function of lung-specific cytochrome c oxidase subunit 4 isoform 2 (COX4i2) in vitro and in COX4i2-knockout mice in vivo. COX was isolated from cow lung and liver as control and functionally analyzed. COX4i2-knockout mice were generated and the effect of the gene knockout was determined, including COX activity, tissue energy levels, noninvasive and invasive lung function, and lung pathology. These studies were complemented by a comprehensive functional screen performed at the German Mouse Clinic (Neuherberg, Germany). We show that isolated cow lung COX containing COX4i2 is about twice as active (88 and 102% increased activity in the presence of allosteric activator ADP and inhibitor ATP, respectively) as liver COX, which lacks COX4i2. In COX4i2-knockout mice, lung COX activity and cellular ATP levels were significantly reduced (-50 and -29%, respectively). Knockout mice showed decreased airway responsiveness (60% reduced P(enh) and 58% reduced airway resistance upon challenge with 25 and 100 mg methacholine, respectively), and they developed a lung pathology deteriorating with age that included the appearance of Charcot-Leyden crystals. In addition, there was an interesting sex-specific phenotype, in which the knockout females showed reduced lean mass (-12%), reduced total oxygen consumption rate (-8%), improved glucose tolerance, and reduced grip force (-14%) compared to wild-type females. Our data suggest that high activity lung COX is a central determinant of airway function and is required for maximal airway responsiveness and healthy lung function. Since airway constriction requires energy, we propose a model in which reduced tissue ATP levels explain protection from airway hyperresponsiveness, i.e., absence of COX4i2 leads to reduced lung COX activity and ATP levels, which results in impaired airway constriction and thus reduced airway responsiveness; long-term lung pathology develops in the knockout mice due to impairment of energy-costly lung maintenance processes; and therefore, we propose mitochondrial oxidative phosphorylation as a novel target for the treatment of respiratory diseases, such as asthma.
Collapse
Affiliation(s)
- Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The power of life--cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion 2011; 12:46-56. [PMID: 21640202 DOI: 10.1016/j.mito.2011.05.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 04/04/2011] [Accepted: 05/18/2011] [Indexed: 11/21/2022]
Abstract
Mitochondrial dysfunction is increasingly recognized as a major factor in the etiology and progression of numerous human diseases, such as (neuro-)degeneration, ischemia reperfusion injury, cancer, and diabetes. Cytochrome c oxidase (COX) represents the rate-limiting enzyme of the mitochondrial respiratory chain and is thus predestined for being a central site of regulation of oxidative phosphorylation, proton pumping efficiency, ATP and reactive oxygen species production, which in turn affect cell signaling and survival. A unique feature of COX is its regulation by various factors and mechanisms interacting with the nucleus-encoded subunits, whose actual functions we are only beginning to understand.
Collapse
|