1
|
Rafie F, Amiresmaili S, Rajizadeh MA, Pourranjbar M, Jafari E, Khaksari M, Shirazpour S, Moradnejad O, Nekouei AH. Optimal Timing of Exercise for Enhanced Learning and Memory: Insights From CA1 and CA3 Regions in Traumatic Brain Injury Model in Male Rats. Brain Behav 2025; 15:e70354. [PMID: 40079502 PMCID: PMC11905061 DOI: 10.1002/brb3.70354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/30/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE Evidence suggests that exercise timing is crucial in reducing the impact of traumatic brain injury (TBI). The present study explores the effects of delayed and early exercise on brain damage, cognitive dysfunction, and anxiety behavior using an experimental TBI model. METHODS We randomly assigned 36 male rats to six groups: control (sham, TBI), treadmill exercise (24hA, 1-month exercise 24 h after TBI), 1WA (1-month exercise 1 week after TBI), 1MB (1-month exercise before TBI), and 1MBA (1-month exercise before and after TBI). RESULTS TBI caused significant impairments in cognitive and anxiety behaviors, as well as increased brain edema (p < 0.05). The exercise groups showed significant improvement in the following order for cognitive impairments: 1MBA > 24hA > 1WA > 1MB. Compared to the 1WA group, exercise starting 24 h after TBI (24hA) significantly improved all variables except anxiety behavior. Exercise 1MBA was significantly more effective than other groups (p < 0.05) in reducing cognitive problems, anxious behavior, and brain damage. CONCLUSION Regular exercise or a consistent exercise routine before TBI, such as in athletes, may provide the most benefits from exercise intervention after the TBI. Starting exercise soon after the TBI (within 24 h) may help protect against brain edema and improve learning and memory by reducing cell death in specific brain regions (CA1 and CA3) and also decreasing TNF-α and MDA compared to starting exercise later (1 week after).
Collapse
Affiliation(s)
- Forouzan Rafie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Division of General Medicine and Geriatrics, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pourranjbar
- Division of General Medicine and Geriatrics, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Elham Jafari
- Pathology and Stem Cell Research Center and Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Khaksari
- Division of General Medicine and Geriatrics, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Physiology and Pharmacology, Kerman Medical Science University, Kerman, Iran
| | - Sara Shirazpour
- Department of Physiology and Pharmacology, Kerman Medical Science University, Kerman, Iran
| | - Omid Moradnejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Hossein Nekouei
- Department of Epidemiology and Biostatistics, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Wender CLA, Farrar E, Sandroff BM. Attrition, adherence, and compliance to exercise training interventions in persons with traumatic brain injury: a systematic review of training studies. Brain Inj 2025; 39:70-83. [PMID: 39317382 DOI: 10.1080/02699052.2024.2403632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Exercise training (ET) is a promising rehabilitation approach for long-term negative consequences of traumatic brain injury (TBI). However, little is known regarding overall rates of attrition, adherence, and compliance to ET in TBI. OBJECTIVE The purpose of this systematic review was to estimate average attrition, adherence, and compliance rates in ET studies in persons with TBI. METHODS Databases were searched from inception to April 15, 2024. Two authors independently extracted data related to attrition, adherence, compliance, and possible moderators identified a priori. RESULTS The average rate of attrition from 45 studies was 14.4%, although the majority of studies had small sample sizes (i.e. n < 42). Based on hierarchical linear regression, the most influential predictors of attrition were sample size and study design. A minority of studies reported adherence (44.4%) or compliance (22.2%) but those that did reported good average adherence (85.1%) and compliance (77.7%). These studies support the ability of persons with TBI to complete an ET intervention as prescribed. CONCLUSIONS Researchers can use this information to ensure adequate power to detect a true effect of ET in persons with TBI. Researchers conducting ET studies in persons with TBI should clearly and thoroughly report data on attrition, adherence, and compliance.
Collapse
Affiliation(s)
- Carly L A Wender
- Center for Neuropsychology & Neuroscience Research, Kessler Foundation, East Hanover, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, New Jersey, USA
| | - Elijah Farrar
- Center for Neuropsychology & Neuroscience Research, Kessler Foundation, East Hanover, New Jersey, USA
| | - Brian M Sandroff
- Center for Neuropsychology & Neuroscience Research, Kessler Foundation, East Hanover, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, New Jersey, USA
| |
Collapse
|
3
|
Burgess C, Tian EJ, Tyack E, Kumar S. Barriers and enablers to physical activity for individuals living with traumatic brain injury: a mixed methods systematic review. Brain Inj 2024; 38:1157-1170. [PMID: 39049550 DOI: 10.1080/02699052.2024.2381053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/28/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Despite well-documented benefits of physical activity (PA), people with brain injury face numerous PA barriers. This mixed methods systematic review aimed to summarize barriers and enablers that individuals with traumatic brain injury (TBI) experience when participating in PA. METHODS Primary studies investigating barriers and/or enablers to PA in adults living with TBI were included. Literature search in MEDLINE, EmCare, Embase, PsychINFO, PEDro, and OTSeeker was initially conducted in December 2021 and January 2022, and updated in June 2022. Methodological quality of the included studies was assessed using Joanna Briggs Institute critical appraisal tools. A customized data extraction form was utilized. Descriptive synthesis was used to summarize the findings. RESULTS Twelve studies of various methodological qualities were identified. Barriers to PA included personal issues, changing health status, external factors, lack of support, and lack of knowledge. Identified enablers included personal drivers, social support, professional support, accessibility, and education. CONCLUSIONS The shared similarities between barriers and enablers across several themes suggest that multiple barriers may be amenable to change. Given the diverse barriers to PA, health professionals should use person-centered, holistic approach with ongoing review and monitoring, when engaging with individuals with TBI.
Collapse
Affiliation(s)
- Chloe Burgess
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Esther Jie Tian
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Elizabeth Tyack
- Brain Injury Rehabilitation Community and Home (BIRCH) NORTH, SA Brain Injury Rehabilitation Services (SABIRS), Central Adelaide Local Health Network - SA Health, Adelaide, Australia
- Brain Injury Rehabilitation Community and Home (BIRCH) SOUTH, SA Brain Injury Rehabilitation Services (SABIRS), Central Adelaide Local Health Network - SA Health, Adelaide, Australia
| | - Saravana Kumar
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| |
Collapse
|
4
|
Alghadir AH, Gabr SA, Iqbal A. Enhancing cognitive performance and mitigating dyslipidemia: the impact of moderate aerobic training on sedentary older adults. BMC Geriatr 2024; 24:678. [PMID: 39138393 PMCID: PMC11323678 DOI: 10.1186/s12877-024-05276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The present study aimed to evaluate the effects of 24 weeks of moderate aerobic exercise on lipids and lipoprotein levels; Lipo (a) markers, and their association with cognitive performance in healthy older adults. METHODS A total of 150 healthy subjects (100 males and 50 females; age range: 65-95 years) were recruited for this study. Based on the LOTCA test score, subjects were classified into two groups: the control group (n = 50) and the cognitive impairment group (n = 100). Cognitive functioning, leisure-time physical activity (LTPA), lipid profile, total cholesterol, TG, HDL-c, LDL-C, and lipo(a) were assessed at baseline and post-24-week aerobic exercise interventions using LOTCA battery, pre-validated Global Physical Activity Questionnaire (GPAQ) version II, colorimetric, and immunoassay techniques, respectively. RESULTS Significant improvements in cognitive function and modulation in lipid profile and lipoprotein (a) markers were reported in all older subjects following 24 weeks of moderate exercise. LOTCA-7-sets scores significantly correlated with physical activity status and the regulation of lipids and Lipo (a) markers. Physically active persons showed higher cognitive performance along with a reduction in the levels of T-Cholest., TG, LDL-C, Lipo (a), and an increase in the levels of HDL-C and aerobic fitness VO2max compared with sedentary participants. Cognitive performance correlated positively with increased aerobic fitness, HDL-C, and negatively with T-Cholest., TG, LDL-C, and Lipo (a). However, a significant increase in the improvement of motor praxis, vasomotor organization, thinking operations, attention, and concentration were reported among older adults. CONCLUSIONS The study findings revealed that supervised moderate aerobic training for 24 weeks significantly enhances cognitive functions via mitigating older adults' lipid profiles and lipoprotein (a). Cognitive performance is positively correlated with aerobic fitness and HDL-C level and negatively with T-Cholest., TH, LDL-C, and Lipo (a).
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sami A Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
5
|
Rafie F, Khaksari M, Amiresmaili S, Soltani Z, Pourranjbar M, Shirazpour S, Jafari E. Protective effects of early exercise on neuroinflammation, and neurotoxicity associated by traumatic brain injury: a behavioral and neurochemical approach. Int J Neurosci 2024; 134:700-713. [PMID: 36379667 DOI: 10.1080/00207454.2022.2144294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The benefits of exercise in TBI have been proven. However, the time-dependent effects of exercise initiation and the involved mechanisms are controversial. We investigated the effects of preconditioning, continuous, early, and delayed treadmill exercise on motor behavior, brain edema, inflammation, and oxidative stress in experimental traumatic brain injury (TBI). MATERIALS AND METHODS 48 male rats were assigned into two groups: sedentary control (Sham and TBI) and exercise groups: 1MB (preconditioning, initiation beginning at 1 month before trauma), 1MBA (continuous, initiation beginning at 1 month before and continuing 1 month after trauma), 24hA (early, initiation beginning at 24 h after trauma), and 1WA (delay, initiation beginning at 1 week after trauma). The rats in exercise groups were forced to run on a treadmill five days a week for 30 min per day. Rotarod and open file were used to assess motor behavior. ELISA was also used to measure total antioxidant capacity (TAC), tumor necrosis factor-alpha (TNF-α), and malondialdehyde (MDA) in serum and CSF. RESULTS Exercise significantly decreased neurological impairments, motor deficits, and apoptosis compared with the sedentary group. Early (within 24 h) and ongoing (1 MBA) exercise significantly improved motor behavior after TBI. In addition, these exercise programs inhibited brain edema and the number of apoptotic cells. MDA and TNF-α levels increased in all exercise groups, but the effects were greater after early exercise than after delayed exercise, resulting in a significant decrease in TAC levels in serum and CSF. We discovered a positive correlation between MDA, TAC, and TNF-α concentration in serum and CSF. CONCLUSION Our finding suggests that early exercise (24hA) and 1MBA groups afford neuroprotection and reduce the second injury consequence, probably by reducing neuronal apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Forouzan Rafie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Kerman Medical Science University, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology and Pharmacology, Kerman Medical Science University, Kerman, Iran
- Endocrine and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Soltani
- Endocrine and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pourranjbar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Shirazpour
- Endocrine and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology sciences, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center and Department of pathology, Kerman University of Medical Science, Kerman, Iran
| |
Collapse
|
6
|
Wouda MF, Bengtson EI, Høyer E, Wesche AP, Jørgensen V. Acute orthostatic responses during early mobilisation of patients with acquired brain injury - Innowalk pro versus standing frame. J Rehabil Assist Technol Eng 2024; 11:20556683241240488. [PMID: 38737723 PMCID: PMC11088804 DOI: 10.1177/20556683241240488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Early mobilisation is paramount in the rehabilitation of patients with acquired brain injuries. However, the effectiveness of mobilisation to standing combined with passive leg movement in mitigating orthostatic intolerance remains uncertain. Hence, we investigated whether participants exhibited better tolerance standing in a motorized standing device with passive leg movements, Innowalk Pro, compared to a traditional standing frame. Methods 17 patients with acquired brain injury (<1 year post-injury) performed two sessions in each standing device on four separate days. Maximum standing time was 30 min, less when symptoms of syncope or volitional exhaustion occurred. Besides total standing time, electromyography of thigh muscles, and changes in mean arterial pressure and heart rate were monitored at rest and during standing. Results No significant differences were found in standing time, changes in mean arterial pressure or heart rate between standing in Innowalk Pro and the standing frame. However, participants had significantly more thigh muscle activation (p = 0.006) when standing in Innowalk Pro. Conclusions Mobilising participants with a subacute acquired brain injury in a standing frame with motorised passive movements of the lower limbs did, despite higher thigh muscle activation, not lead to better orthostatic tolerance or prolonged standing time compared to a traditional standing frame.
Collapse
Affiliation(s)
- Matthijs F Wouda
- Research Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
- Oslo Metropolitan University, Oslo, Norway
| | - Espen I Bengtson
- Research Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
| | - Ellen Høyer
- Research Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
| | - Alhed P Wesche
- Research Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
| | - Vivien Jørgensen
- Research Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
| |
Collapse
|
7
|
Li Y, Chen R, Shen G, Yin J, Li Y, Zhao J, Nan F, Zhang S, Zhang H, Yang C, Wu M, Fan Y. Delayed CO 2 postconditioning promotes neurological recovery after cryogenic traumatic brain injury by downregulating IRF7 expression. CNS Neurosci Ther 2023; 29:3378-3390. [PMID: 37208955 PMCID: PMC10580333 DOI: 10.1111/cns.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
AIMS Few treatments are available in the subacute phase of traumatic brain injury (TBI) except rehabilitation training. We previously reported that transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects against cerebral ischemia/reperfusion injury. In this study, it was hypothesized that delayed CO2 postconditioning (DCPC) starting at the subacute phase may promote neurological recovery of TBI. METHODS Using a cryogenic TBI (cTBI) model, mice received DCPC daily by inhaling 5%/10%/20% CO2 for various time-courses (one/two/three cycles of 10-min inhalation/10-min break) at Days 3-7, 3-14 or 7-18 after cTBI. Beam walking and gait tests were used to assess the effect of DCPC. Lesion size, expression of GAP-43 and synaptophysin, amoeboid microglia number and glia scar area were detected. Transcriptome and recombinant interferon regulatory factor 7 (Irf7) adeno-associated virus were applied to investigate the molecular mechanisms. RESULTS DCPC significantly promoted recovery of motor function in a concentration and time-course dependent manner with a wide therapeutic time window of at least 7 days after cTBI. The beneficial effects of DCPC were blocked by intracerebroventricular injection of NaHCO3 . DCPC also increased puncta density of GAP-43 and synaptophysin, and reduced amoeboid microglia number and glial scar formation in the cortex surrounding the lesion. Transcriptome analysis showed many inflammation-related genes and pathways were altered by DCPC, and Irf7 was a hub gene, while overexpression of IRF7 blocked the motor function improvement of DCPC. CONCLUSIONS We first showed that DCPC promoted functional recovery and brain tissue repair, which opens a new therapeutic time window of postconditioning for TBI. Inhibition of IRF7 is a key molecular mechanism for the beneficial effects of DCPC, and IRF7 may be a potential therapeutic target for rehabilitation after TBI.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Ru Chen
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Gui‐Ping Shen
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Jing Yin
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Yu Li
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Jing Zhao
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Fang Nan
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Shu‐Han Zhang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Hui‐Feng Zhang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Cai‐Hong Yang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Mei‐Na Wu
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Yan‐Ying Fan
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
8
|
Albrahim T, Alangry R, Alotaibi R, Almandil L, Alburikan S. Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients 2023; 15:4270. [PMID: 37836554 PMCID: PMC10574130 DOI: 10.3390/nu15194270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
A collection of metabolic disorders and neurodegenerative diseases linked to oxidative stress and neuroinflammation frequently affect postmenopausal women or estrogen deprivation. Recent research has focused on alternative therapies that can enhance these women's quality of life. This study set out to investigate the effects of physical exercise (EX) and intermittent fasting (IF) on oxidants/antioxidants, inflammatory cytokines, neurotransmitters, and brain-derived neurotrophic factor (BDNF) in the cortex of rats. Additionally, it sought to assess the response to oxidative stress and neuroinflammation in the brains of rats following ovariectomy (OVX) and the potential mechanisms of these interventions. Fifty female rats were divided into one of the following groups 30 days after bilateral OVX: Control, OVX, OVX + EX, OVX + IF, and OVX + EX + IF groups. The rats in the Control and OVX groups continued their normal activities and had unrestricted access to food and water, but the rats in the OVX + EX and OVX + EX + IF groups had a 4-week treadmill training program, and the rats in the OXV + IF and OVX + EX + IF groups fasted for 13 h each day. The rats were killed, the cerebral cortex was taken, tissue homogenates were created, and various parameters were estimated using these homogenates. The results show that ovariectomized rats had decreased levels of neurotransmitters (DA, NE, and SE), acetylcholinesterase, brain GSH (glutathione), SOD (superoxide dismutase), catalase, GPx (glutathione peroxidase), and TAC (total antioxidant capacity), as well as elevated levels of proinflammatory cytokines and mediators (TNF-α, IL-1β, Cox-2). While ovariectomy-induced declines in neurotransmitters, enzymatic and nonenzymatic molecules, neuroinflammation, and oxidative brain damage were considerably mitigated and prevented by treadmill exercise and intermittent fasting, BDNF was significantly increased. These results suggest that ovariectomy can impair rat neuronal function and regular treadmill exercise and intermittent fasting seem to protect against ovariectomy-induced neuronal impairment through the inhibition of oxidative stress and neuroinflammation and increased BDNF levels in the brain cortex. However, combining regular exercise and intermittent fasting did not provide additional benefits compared to either treatment alone.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (R.A.); (R.A.); (L.A.); (S.A.)
| | | | | | | | | |
Collapse
|
9
|
Griggs MA, Parr B, Vandegrift NS, Jelsone-Swain L. The effect of acute exercise on attentional control and theta power in young adults. Exp Brain Res 2023; 241:2509-2520. [PMID: 37670008 DOI: 10.1007/s00221-023-06660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/26/2023] [Indexed: 09/07/2023]
Abstract
Exercise has a profound impact on one's health, and it is becoming increasingly accepted that exercise also benefits cognitive functioning. Yet, the neural mechanism for which cognitive enhancement occurs is less understood. Therefore, the purpose of our study was to experimentally test whether an acute exercise activity was able to increase theta power and behavioral performance during an executive functioning attentional control task. Participants were randomly assigned to either a stationary-bike exercise or a resting control condition. Thereafter, they completed the Eriksen flanker task, and most participants completed this while EEG data were recorded. From the flanker task data, we demonstrated an interaction effect from both accuracy and reaction time measurements. Importantly, the exercise group was more accurate than the control group in incongruent trials. From the EEG data, theta power was overall higher in the exercise group, especially during the congruent trials, compared to controls. Our results add to the limited but growing body of research that suggests acute exercise produces a general increase in theta power, which in turn may play a role in enhancing cognitive performance. These results, combined with previous research, could have widespread implications in multiple settings such as in the investigation of a biomarker of physical fitness, neurorehabilitation, and in education.
Collapse
Affiliation(s)
- Mark A Griggs
- Department of Psychology, University of South Carolina Aiken, 471 University Pkwy, Aiken, SC, 29801, USA
| | - Brian Parr
- Department of Exercise Science, University of South Carolina Aiken, 471 University Pkwy, Aiken, SC, 29801, USA
| | - Nathan S Vandegrift
- Department of Psychology, University of South Carolina Aiken, 471 University Pkwy, Aiken, SC, 29801, USA
| | - Laura Jelsone-Swain
- Department of Psychology, University of South Carolina Aiken, 471 University Pkwy, Aiken, SC, 29801, USA.
| |
Collapse
|
10
|
Amiri S, Fathi-Ashtiani M. Exercise Increasing Health-Related Quality of Life in Type 2 Diabetics: A Meta-Analysis. PHYSICAL & OCCUPATIONAL THERAPY IN GERIATRICS 2023; 41:383-414. [DOI: 10.1080/02703181.2022.2154883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Sohrab Amiri
- Medicine, Quran and Hadith Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
11
|
Castillo-Navarrete JL, Guzmán-Castillo A, Bustos C, Rojas R. Peripheral brain-derived neurotrophic factor (BDNF) and salivary cortisol levels in college students with different levels of academic stress. Study protocol. PLoS One 2023; 18:e0282007. [PMID: 36812175 PMCID: PMC9946253 DOI: 10.1371/journal.pone.0282007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) is essential for brain physiological processes influencing memory and learning. BDNF levels can be affected by many factors, including stress. Stress increase serum and salivary cortisol levels. Academic stress is of the chronic type. BDNF levels can be measure from serum, plasma or platelets, and there is still no standard methodology, which is relevant to ensure reproducibility and comparability between studies. HYPOTHESIS (i) BDNF concentrations in serum show greater variability than in plasma. (ii) In college students with academic stress, peripheral BDNF decreases and salivary cortisol increases. GENERAL OBJECTIVE To standardize plasma and serum collection for BDNF levels and to determine whether academic stress affects peripheral BDNF and salivary cortisol levels. DESIGN Quantitative research, with a non-experimental cross-sectional descriptive design. PARTICIPANTS Student volunteers. Under convenience sampling, 20 individuals will be included for standardization of plasma and serum collection and between 70 and 80 individuals to determine the effect of academic stress on BDNF and salivary cortisol. PERIPHERAL BLOOD AND SALIVARY CORTISOL SAMPLING, MEASUREMENTS 12 mL of peripheral blood (with and without anticoagulant) will be drawn per participant, separated from plasma or serum and cryopreserved at -80°C. Additionally, they will be instructed in the collection of 1 mL of saliva samples, which will be centrifuged. Val66Met polymorphism will be performed by allele-specific PCR, while BDNF and salivary cortisol levels will be determined by ELISA. STATISTICAL ANALYSIS (i) descriptive analysis of the variables, through measures of central tendency and dispersion, and the categorical variables through their frequency and percentage. (ii) Then a bivariate analysis will be performed comparing groups using each variable separately. EXPECTED RESULTS We expect to (i) determine the analytical factors that allow a better reproducibility in the measurement of peripheral BDNF, and (ii) the effect of academic stress on BDNF and salivary cortisol levels.
Collapse
Affiliation(s)
- Juan-Luis Castillo-Navarrete
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Concepción, Chile
- * E-mail: (JLCN); (AGC)
| | - Alejandra Guzmán-Castillo
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Concepción, Chile
- Programme in Mental Health, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
- * E-mail: (JLCN); (AGC)
| | - Claudio Bustos
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Concepción, Chile
- Departamento de Psicología, Facultad de Ciencias Sociales, Universidad de Concepción, Concepción, Chile
| | - Romina Rojas
- Programa de Neurociencia, Psiquiatría y Salud Mental, NEPSAM (http://nepsam.udec.cl), Universidad de Concepción, Concepción, Chile
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
12
|
Hsueh SC, Scerba MT, Tweedie D, Lecca D, Kim DS, Baig AM, Kim YK, Hwang I, Kim S, Selman WR, Hoffer BJ, Greig NH. Activity of a Novel Anti-Inflammatory Agent F-3,6'-dithiopomalidomide as a Treatment for Traumatic Brain Injury. Biomedicines 2022; 10:2449. [PMID: 36289711 PMCID: PMC9598880 DOI: 10.3390/biomedicines10102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for several neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). Neuroinflammation is a cause of later secondary cell death following TBI, has the potential to aggravate the initial impact, and provides a therapeutic target, albeit that has failed to translate into clinical trial success. Thalidomide-like compounds have neuroinflammation reduction properties across cellular and animal models of TBI and neurodegenerative disorders. They lower the generation of proinflammatory cytokines, particularly TNF-α which is pivotal in microglial cell activation. Unfortunately, thalidomide-like drugs possess adverse effects in humans before achieving anti-inflammatory drug levels. We developed F-3,6'-dithiopomalidomide (F-3,6'-DP) as a novel thalidomide-like compound to ameliorate inflammation. F-3,6'-DP binds to cereblon but does not efficiently trigger the degradation of the transcription factors (SALL4, Ikaros, and Aiolos) associated with the teratogenic and anti-proliferative responses of thalidomide-like drugs. We utilized a phenotypic drug discovery approach that employed cellular and animal models in the selection and development of F-3,6'-DP. F-3,6'-DP significantly mitigated LPS-induced inflammatory markers in RAW 264.7 cells, and lowered proinflammatory cytokine/chemokine levels in the plasma and brain of rats challenged with systemic LPS. We subsequently examined immunohistochemical, biochemical, and behavioral measures following controlled cortical impact (CCI) in mice, a model of moderate TBI known to induce inflammation. F-3,6'-DP decreased CCI-induced neuroinflammation, neuronal loss, and behavioral deficits when administered after TBI. F-3,6'-DP represents a novel class of thalidomide-like drugs that do not lower classical cereblon-associated transcription factors but retain anti-inflammatory actions and possess efficacy in the treatment of TBI and potentially longer-term neurodegenerative disorders.
Collapse
Affiliation(s)
- Shih Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Michael T. Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Daniela Lecca
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD 20878, USA
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | | | | | - Sun Kim
- Aevis Bio, Inc., Daejeon 34141, Korea
| | - Warren R. Selman
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Barry J. Hoffer
- Department of Neurological Surgery, Case Western Reserve University and University Hospitals, Cleveland, OH 44106, USA
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Gibbs K, Wilkie L, Jarman J, Barker-Smith A, Kemp AH, Fisher Z. Riding the wave into wellbeing: A qualitative evaluation of surf therapy for individuals living with acquired brain injury. PLoS One 2022; 17:e0266388. [PMID: 35390052 PMCID: PMC8989185 DOI: 10.1371/journal.pone.0266388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/19/2022] [Indexed: 12/02/2022] Open
Abstract
Nature has long demonstrated the capacity to facilitate wellbeing. Interventions involving the natural environment such as surf therapy, are increasingly being used to facilitate aspects of wellbeing in clinical populations. However, explorations of how nature-based interventions such as surf therapy may be used to promote wellbeing in the context of neurorehabilitation are missing from the peer-reviewed literature. Here we characterize the experience of a five-week surfing intervention involving fifteen adults living with the psycho-social and cognitive sequelae of acquired brain injury. Insights were analysed using reflexive thematic analysis, which highlighted the importance of seven overarching themes, including: 1) Connection to Nature, 2) Facilitating Trust and Safety, 3) Managing and Accepting Difficult Emotions, 4) Facilitating Positive Emotion, Meaning and Purpose, 5) Building Community through Social Connection, and 6) Positive Change. Barriers and opportunities (theme 7) were also identified as components on which clinical services may be improved. We present a theoretical model for the benefits of surf therapy in people living with acquired brain injury (ABI) based on these themes and reflections on findings from the wider literature. Findings emphasise the importance of leveraging community partnerships to augment the holistic model of neurorehabilitation and potential implications for service redesign are discussed, focusing on recent developments in wellbeing science.
Collapse
Affiliation(s)
- Katie Gibbs
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom
- Regional Neuropsychology and Community Brain Injury Service, Morriston Hospital, Swansea, United Kingdom
| | - Lowri Wilkie
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom
- Regional Neuropsychology and Community Brain Injury Service, Morriston Hospital, Swansea, United Kingdom
| | - Jack Jarman
- Regional Neuropsychology and Community Brain Injury Service, Morriston Hospital, Swansea, United Kingdom
| | - Abigail Barker-Smith
- Regional Neuropsychology and Community Brain Injury Service, Morriston Hospital, Swansea, United Kingdom
| | - Andrew H. Kemp
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom
- Regional Neuropsychology and Community Brain Injury Service, Morriston Hospital, Swansea, United Kingdom
| | - Zoe Fisher
- Regional Neuropsychology and Community Brain Injury Service, Morriston Hospital, Swansea, United Kingdom
- Health and Wellbeing Academy, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
15
|
Shobeiri P, Karimi A, Momtazmanesh S, Teixeira AL, Teunissen CE, van Wegen EEH, Hirsch MA, Yekaninejad MS, Rezaei N. Exercise-induced increase in blood-based brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis: A systematic review and meta-analysis of exercise intervention trials. PLoS One 2022; 17:e0264557. [PMID: 35239684 PMCID: PMC8893651 DOI: 10.1371/journal.pone.0264557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exercise training may affect the blood levels of brain-derived neurotrophic factor (BDNF), but meta-analyses have not yet been performed comparing pre- and post-intervention BDNF concentrations in patients with multiple sclerosis (PwMS). OBJECTIVE To perform a meta-analysis to study the influence of exercise on BDNF levels and define components that modulate them across clinical trials of exercise training in adults living with multiple sclerosis (MS). METHOD Five databases (PubMed, EMBASE, Cochrane Library, PEDro database, CINAHL) were searched up to June 2021. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, we included 13 articles in the meta-analysis, including 271 subjects. To investigate sources of heterogeneity, subgroup analysis, meta-regression, and sensitivity analysis were conducted. We performed the meta-analysis to compare pre- and post-exercise peripheral levels of BDNF in PwMS. RESULTS Post-exercise concentrations of serum BDNF were significantly higher than pre-intervention levels (Standardized Mean Difference (SMD): 0.33, 95% CI: [0.04; 0.61], p-value = 0.02). Meta-regression indicated that the quality of the included studies based on the PEDro assessment tool might be a source of heterogeneity, while no significant effect was found for chronological age and disease severity according to the expanded disability status scale. CONCLUSION This systematic review and meta-analysis shows that physical activity increases peripheral levels of BDNF in PwMS. More research on the effect of different modes of exercise on BDNF levels in PwMS is warranted.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Children’s Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Karimi
- School of Medicine, Children’s Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Children’s Medical Center Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Antônio L. Teixeira
- Department of Psychiatry and Behavioral Sciences, Neuropsychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Charlotte E. Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Boelelaan, Amsterdam, The Netherlands
| | - Erwin E. H. van Wegen
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark A. Hirsch
- Department of Physical Medicine and Rehabilitation, Carolinas Medical Center, Carolinas Rehabilitation, Charlotte, North Carolina, United States of America
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
16
|
Buchmann Godinho D, da Silva Fiorin F, Schneider Oliveira M, Furian AF, Rechia Fighera M, Freire Royes LF. The immunological influence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neurosci Biobehav Rev 2021; 130:15-30. [PMID: 34400178 DOI: 10.1016/j.neubiorev.2021.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a non-degenerative and non-congenital insult to the brain and is recognized as a global public health problem, with a high incidence of neurological disorders. Despite the causal relationship not being entirely known, it has been suggested that multiorgan inflammatory response involving the autonomic nervous system and the spleen-gut brain axis dysfunction exacerbate the TBI pathogenesis in the brain. Thus, applying new therapeutic tools, such as physical exercise, have been described in the literature to act on the immune modulation induced by brain injuries. However, there are caveats to consider when interpreting the effects of physical exercise on this neurological injury. Given the above, this review will highlight the main findings of the literature involving peripheral immune responses in TBI-induced neurological damage and how changes in the cellular metabolism of the spleen-gut brain axis elicited by different protocols of physical exercise alter the pathophysiology induced by this neurological injury.
Collapse
Affiliation(s)
- Douglas Buchmann Godinho
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernando da Silva Fiorin
- Programa de Pós-Graduação em Neuroengenharia, Instituto Internacional de Neurociências Edmond e Lily Safra, Instituto Santos Dumont, Macaíba, RN, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Departamento de Clínica Médica e Pediatria, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
17
|
Barlow KM, Iyer K, Yan T, Scurfield A, Carlson H, Wang Y. Cerebral Blood Flow Predicts Recovery in Children with Persistent Post-Concussion Symptoms after Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2275-2283. [PMID: 33430707 PMCID: PMC9009764 DOI: 10.1089/neu.2020.7566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Persistent post-concussion symptoms (PPCS) following pediatric mild traumatic brain injury (mTBI) are associated with differential changes in cerebral blood flow (CBF). Given its potential as a therapeutic target, we examined CBF changes during recovery in children with PPCS. We hypothesized that CBF would decrease and that such decreases would mirror clinical recovery. In a prospective cohort study, 61 children and adolescents (mean age 14 [standard deviation = 2.6] years; 41% male) with PPCS were imaged with three-dimensional (3D) pseudo-continuous arterial spin-labelled (pCASL) magnetic resonance imaging (MRI) at 4-6 and 8-10 weeks post-injury. Exclusion criteria included any significant past medical history and/or previous concussion within the past 3 months. Twenty-three participants had clinically recovered at the time of the second scan. We found that relative and mean absolute CBF were higher in participants with poor recovery, 44.0 (95% confidence interval [CI]: 43.32, 44.67) than in those with good recovery, 42.19 (95% CI: 41.77, 42.60) mL/min/100 g gray tissue and decreased over time (β = -1.75; p < 0.001). The decrease was greater in those with good recovery (β = 2.29; p < 0.001) and predicted outcome in 77% of children with PPCS (odds ratio [OR] 0.54, 95% CI: 0.36, 0.80; p = 0.002). Future studies are warranted to validate the utility of CBF as a useful predictive biomarker of outcome in PPCS.
Collapse
Affiliation(s)
- Karen M. Barlow
- Children's Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
- Queensland Children's Hospital, Children's Health Queensland, Brisbane, Queensland, Australia
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kartik Iyer
- Children's Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Tingting Yan
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alex Scurfield
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Helen Carlson
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
18
|
Karelina K, Schneiderman K, Shah S, Fitzgerald J, Cruz RV, Oliverio R, Whitehead B, Yang J, Weil ZM. Moderate Intensity Treadmill Exercise Increases Survival of Newborn Hippocampal Neurons and Improves Neurobehavioral Outcomes after Traumatic Brain Injury. J Neurotrauma 2021; 38:1858-1869. [PMID: 33470170 PMCID: PMC8219196 DOI: 10.1089/neu.2020.7389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Physician-prescribed rest after traumatic brain injury (TBI) is both commonplace and an increasingly scrutinized approach to TBI treatment. Although this practice remains a standard of patient care for TBI, research of patient outcomes reveals little to no benefit of prescribed rest after TBI, and in some cases prolonged rest has been shown to interfere with patient well-being. In direct contrast to the clinical advice regarding physical activity after TBI, animal models of brain injury consistently indicate that exercise is neuroprotective and promotes recovery. Here, we assessed the effect of low and moderate intensity treadmill exercise on functional outcome and hippocampal neural proliferation after brain injury. Using the controlled cortical impact (CCI) mouse model of TBI, we show that 10 days of moderate intensity treadmill exercise initiated after CCI reduces anxiety-like behavior, improves hippocampus-dependent spatial memory, and promotes hippocampal proliferation and newborn neuronal survival. Pathophysiological measures including lesion volume and axon degeneration were not altered by exercise. Taken together, these data reveal that carefully titrated physical activity may be a safe and effective approach to promoting recovery after brain injury.
Collapse
Affiliation(s)
- Kate Karelina
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Katarina Schneiderman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sarthak Shah
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ruth Velazquez Cruz
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Robin Oliverio
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Bailey Whitehead
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Jingzhen Yang
- Nationwide Children's Hospital, Center for Injury Research and Policy, Columbus, Ohio, USA
| | - Zachary M. Weil
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
19
|
Gait analysis in a rat model of traumatic brain injury. Behav Brain Res 2021; 405:113210. [PMID: 33639268 DOI: 10.1016/j.bbr.2021.113210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/19/2023]
Abstract
Gait disruptions following traumatic brain injury (TBI) are noted in the clinical population. To date, thorough analysis of gait changes in animal models of TBI to allow for correlation of pathological alterations and utilization of this as a therapeutic outcome have been limited. We therefore assessed gait using the DigiGait analysis system as well as overall locomotion using the Beam Walk test in adult male Sprague-Dawley rats following a commonly used model of TBI, parietal lobe controlled cortical impact (CCI). Rats underwent DigiGait baseline analysis 24 h prior to injury, followed by a moderate CCI in the left parietal lobe. Performance on the DigiGait was then assessed at 1, 3, 7, and 14 days post-injury, followed by histological analysis of brain tissue. Beam walk analysis showed a transient but significant impairment acutely after injury. Despite observance of gait disturbance in the clinical population, TBI in the parietal lobe of rats resulted in limited alterations in hind or forelimb function. General hindlimb locomotion showed significant but transient impairment. Significant changes in gait were observed to last through the sub-acute period, including right hindpaw angle of rotation and left forelimb and right hindlimb swing phase duration. Slight changes that did not reach statistical significant but may reflect subtle impacts of TBI on gait were reflected in several other measures, such as stride duration, stance duration and stance width. These results demonstrate that moderate-severe injury to the parietal cortex and underlying structures including corpus callosum, hippocampus, thalamus and basal ganglia result in slight changes to gait that can be detected using the Digigait analysis system.
Collapse
|
20
|
Sanches EF, Dos Santos TM, Odorcyk F, Untertriefallner H, Rezena E, Hoeper E, Avila T, Martini AP, Venturin GT, da Costa JC, Greggio S, Netto CA, Wyse AT. Pregnancy swimming prevents early brain mitochondrial dysfunction and causes sex-related long-term neuroprotection following neonatal hypoxia-ischemia in rats. Exp Neurol 2021; 339:113623. [PMID: 33529673 DOI: 10.1016/j.expneurol.2021.113623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of cognitive impairments in infants. Antenatal strategies improving the intrauterine environment can have high impact decreasing pregnancy-derived intercurrences. Physical exercise alters the mother-fetus unity and has been shown to prevent the energetic challenge imposed by HI. This study aimed to reveal neuroprotective mechanisms afforded by pregnancy swimming on early metabolic failure and late cognitive damage, considering animals' sex as a variable. Pregnant Wistar rats were submitted to daily swimming exercise (20' in a tank filled with 32 °C water) during pregnancy. Neonatal HI was performed in male and female pups at postnatal day 7. Electron chain transport, mitochondrial mass and function and ROS formation were assessed in the right brain hemisphere 24 h after HI. From PND45, reference and working spatial memory were tested in the Morris water maze. MicroPET-FDG images were acquired 24 h after injury (PND8) and at PND60, following behavioral analysis. HI induced early energetic failure, decreased enzymatic activity in electron transport chain, increased production of ROS in cortex and hippocampus as well as caused brain glucose metabolism dysfunction and late cognitive impairments. Maternal swimming was able to prevent mitochondrial dysfunction and to improve spatial memory. The intergenerational effects of swimming were sex-specific, since male rats were benefited most. In conclusion, maternal swimming was able to affect the mitochondrial response to HI in the offspring's brains, preserving its function and preventing cognitive damage in a sex-dependent manner, adding relevant information on maternal exercise neuroprotection and highlighting the importance of mitochondria as a therapeutic target for HI neuropathology.
Collapse
Affiliation(s)
- E F Sanches
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - T M Dos Santos
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - F Odorcyk
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - H Untertriefallner
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Rezena
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - E Hoeper
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - T Avila
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A P Martini
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G T Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - J C da Costa
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C A Netto
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A T Wyse
- Biochemistry Post-graduation Program, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil; Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Ferguson L, Giza CC, Serpa RO, Greco T, Folkerts M, Prins ML. Recovery From Repeat Mild Traumatic Brain Injury in Adolescent Rats Is Dependent on Pre-injury Activity State. Front Neurol 2021; 11:616661. [PMID: 33488505 PMCID: PMC7820072 DOI: 10.3389/fneur.2020.616661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Adolescents and young adults have the highest incidence of mild traumatic brain injury (mTBI); sport-related activities are a major contributor. Roughly a third of these patients diagnosed with mTBI are estimated to have received a subsequent repeat mTBI (rTBI). Previously, animal studies have only modeled mTBI in sedentary animals. This study utilizes physical activity as a dependent variable prior to rTBI in adolescent rats by allowing voluntary exercise in males, establishing the rat athlete (rathlete). Rats were given access to locked or functional running wheels for 10 d prior to sham or rTBI injury. Following rTBI, rathletes were allowed voluntary access to running wheels beginning on different days post-injury: no run (rTBI+no run), immediate run (rTBI+Immed), or 3 day delay (rTBI+3dd). Rats were tested for motor and cognitive-behavioral (anxiety, social, memory) and mechanosensory (allodynia) dysfunction using a novel rat standardized concussion assessment tool on post-injury days 1,3,5,7, and 10. Protein expression of brain derived neurotrophic factor (BDNF) and proliferator-activated gamma coactivator 1-alpha (PGC1α) was measured in the parietal cortex, hippocampus, and gastrocnemius muscle. Sedentary shams displayed lower anxiety-like behaviors compared to rathlete shams on all testing days. BDNF and PGC1α levels increased in the parietal cortex and hippocampus with voluntary exercise. In rTBI rathletes, the rTBI+Immed group showed impaired social behavior, memory impairment in novel object recognition, and increased immobility compared to rathlete shams. All rats showed greater neuropathic mechanosensory sensitivity than previously published uninjured adults, with rTBI+3dd showing greatest sensitivity. These results demonstrate that voluntary exercise changes baseline functioning of the brain, and that among rTBI rathletes, delayed return to activity improved cognitive recovery.
Collapse
Affiliation(s)
- Lindsay Ferguson
- University of California Los Angeles, David Geffen School of Medicine, Department of Neurosurgery, Brain Injury Research Center, Los Angeles, CA, United States.,University of California Los Angeles, Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Christopher C Giza
- University of California Los Angeles, David Geffen School of Medicine, Department of Neurosurgery, Brain Injury Research Center, Los Angeles, CA, United States.,University of California Los Angeles, Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Rebecka O Serpa
- University of California Los Angeles, David Geffen School of Medicine, Department of Neurosurgery, Brain Injury Research Center, Los Angeles, CA, United States.,University of California Los Angeles, Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Tiffany Greco
- University of California Los Angeles, David Geffen School of Medicine, Department of Neurosurgery, Brain Injury Research Center, Los Angeles, CA, United States.,University of California Los Angeles, Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| | - Michael Folkerts
- Department of Psychology, Seaver College, Pepperdine University, Malibu, CA, United States
| | - Mayumi L Prins
- University of California Los Angeles, David Geffen School of Medicine, Department of Neurosurgery, Brain Injury Research Center, Los Angeles, CA, United States.,University of California Los Angeles, Steve Tisch BrainSPORT Program, Los Angeles, CA, United States
| |
Collapse
|
22
|
Di Raimondo D, Rizzo G, Musiari G, Tuttolomondo A, Pinto A. Role of Regular Physical Activity in Neuroprotection against Acute Ischemia. Int J Mol Sci 2020; 21:ijms21239086. [PMID: 33260365 PMCID: PMC7731306 DOI: 10.3390/ijms21239086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
One of the major obstacles that prevents an effective therapeutic intervention against ischemic stroke is the lack of neuroprotective agents able to reduce neuronal damage; this results in frequent evolution towards a long-term disability with limited alternatives available to aid in recovery. Nevertheless, various treatment options have shown clinical efficacy. Neurotrophins such as brain-derived neurotrophic factor (BDNF), widely produced throughout the brain, but also in distant tissues such as the muscle, have demonstrated regenerative properties with the potential to restore damaged neural tissue. Neurotrophins play a significant role in both protection and recovery of function following neurological diseases such as ischemic stroke or traumatic brain injury. Unfortunately, the efficacy of exogenous administration of these neurotrophins is limited by rapid degradation with subsequent poor half-life and a lack of blood-brain-barrier permeability. Regular exercise seems to be a therapeutic approach able to induce the activation of several pathways related to the neurotrophins release. Exercise, furthermore, reduces the infarct volume in the ischemic brain and ameliorates motor function in animal models increasing astrocyte proliferation, inducing angiogenesis and reducing neuronal apoptosis and oxidative stress. One of the most critical issues is to identify the relationship between neurotrophins and myokines, newly discovered skeletal muscle-derived factors released during and after exercise able to exert several biological functions. Various myokines (e.g., Insulin-Like Growth Factor 1, Irisin) have recently shown their ability to protects against neuronal injury in cerebral ischemia models, suggesting that these substances may influence the degree of neuronal damage in part via inhibiting inflammatory signaling pathways. The aim of this narrative review is to examine the main experimental data available to date on the neuroprotective and anti-ischemic role of regular exercise, analyzing also the possible role played by neurotrophins and myokines.
Collapse
|
23
|
Exercise factors as potential mediators of cognitive rehabilitation following traumatic brain injury. Curr Opin Neurol 2019; 32:808-814. [DOI: 10.1097/wco.0000000000000754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Koppelmans V, Scott JM, Downs ME, Cassady KE, Yuan P, Pasternak O, Wood SJ, De Dios YE, Gadd NE, Kofman I, Riascos R, Reuter-Lorenz PA, Bloomberg JJ, Mulavara AP, Ploutz-Snyder LL, Seidler RD. Exercise effects on bed rest-induced brain changes. PLoS One 2018; 13:e0205515. [PMID: 30308004 PMCID: PMC6181401 DOI: 10.1371/journal.pone.0205515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Spaceflight negatively affects sensorimotor behavior; exercise mitigates some of these effects. Head down tilt bed rest (HDBR) induces body unloading and fluid shifts, and is often used to investigate spaceflight effects. Here, we examined whether exercise mitigates effects of 70 days HDBR on the brain and if fitness and brain changes with HDBR are related. METHODS HDBR subjects were randomized to no-exercise (n = 5) or traditional aerobic and resistance exercise (n = 5). Additionally, a flywheel exercise group was included (n = 8). Exercise protocols for exercise groups were similar in intensity, therefore these groups were pooled in statistical analyses. Pre and post-HDBR MRI (structure and structural/functional connectivity) and physical fitness measures (lower body strength, muscle cross sectional area, VO2 max, body composition) were collected. Voxel-wise permutation analyses were used to test group differences in brain changes, and their associations with fitness changes. RESULTS Comparisons of exercisers to controls revealed that exercise led to smaller fitness deterioration with HDBR but did not affect brain volume or connectivity. Group comparisons showed that exercise modulated post-HDBR recovery of brain connectivity in somatosensory regions. Posthoc analysis showed that this was related to functional connectivity decrease with HDBR in non-exercisers but not in exercisers. Correlational analyses between fitness and brain changes showed that fitness decreases were associated with functional connectivity and volumetric increases (all r >.74), potentially reflecting compensation. Modest brain changes or even decreases in connectivity and volume were observed in subjects who maintained or showed small fitness gains. These results did not survive Bonferroni correction, but can be considered meaningful because of the large effect sizes. CONCLUSION Exercise performed during HDBR mitigates declines in fitness and strength. Associations between fitness and brain connectivity and volume changes, although unadjusted for multiple comparisons in this small sample, suggest that supine exercise reduces compensatory HDBR-induced brain changes.
Collapse
Affiliation(s)
- Vincent Koppelmans
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, United States of America
| | - Jessica M. Scott
- Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States of America
| | | | - Kaitlin E. Cassady
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peng Yuan
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ofer Pasternak
- Department of Psychiatry and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott J. Wood
- NASA Johnson Space Center, Houston, Texas, United States of America
| | | | | | - Igor Kofman
- KBRwyle, Houston, Texas, United States of America
| | - Roy Riascos
- The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Patricia A. Reuter-Lorenz
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | | | - Lori L. Ploutz-Snyder
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Universities Space Research Association, NASA Johnson Space Center, Houston, Texas, United States of America
| | - Rachael D. Seidler
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
25
|
Ramsey J, Driver S, Swank C, Bennett M, Dubiel R. Physical activity intensity of patient’s with traumatic brain injury during inpatient rehabilitation. Brain Inj 2018; 32:1518-1524. [DOI: 10.1080/02699052.2018.1500715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jeffrey Ramsey
- Clinical Research Management, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Simon Driver
- Physical Medicine and Rehabilitation, Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| | - Chad Swank
- Health Professions, Texas Woman’s University, Dallas, Texas, USA
| | - Monica Bennett
- Office of the Chief Quality Officer, Baylor Scott and White Health, Dallas, Texas, USA
| | - Randi Dubiel
- Physical Medicine and Rehabilitation, Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| |
Collapse
|
26
|
Exercise Rehabilitation Attenuates Cognitive Deficits in Rats with Traumatic Brain Injury by Stimulating the Cerebral HSP20/BDNF/TrkB Signalling Axis. Mol Neurobiol 2018; 55:8602-8611. [PMID: 29574629 DOI: 10.1007/s12035-018-1011-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Physical exercise (PE) is an effective method for improving cognitive function among patients with traumatic brain injury (TBI). We previously demonstrated that PE with an infrared-sensing running wheel (ISRW) system provides strong neuroprotection in an experimental animal model of stroke. In this study, we used fluid percussion injury in rats to simulate mild TBI. For rats, we used both passive avoidance learning and the Y-maze tests to evaluate cognitive function. We investigated whether PE rehabilitation attenuated cognitive deficits in rats with TBI and determined the contribution of hippocampal and cortical expression of heat shock protein 20 (HSP20) to PE-mediated cognitive recovery. In addition to increasing hippocampal and cortical expression of HSP20, brain-derived neurotrophic factor (BDNF), and the tropomyosin receptor kinase B (TrkB) ratio, PE rehabilitation significantly attenuated brain contusion and improved cognitive deficits in the rat model. Furthermore, reducing hippocampal and cortical expression of HSP20 with an intracerebral injection of pSUPER hsp20 small interfering RNA significantly diminished the PE-induced overexpression of hippocampal and cortical BDNF and the TrkB ratio and also reversed the beneficial effect of PE in reducing neurotrauma and the cognitive deficits. A positive Pearson correlation was found between HSP20 and BDNF, as well as between HSP20 and TrkB, in the hippocampal and cortical tissues. We thus conclude that post-ischaemic ISRW exercise rehabilitation attenuates cognitive deficits, as well as brain contusions, in TBI rats by stimulating the cerebral HSP20/BDNF/TrkB signalling axis.
Collapse
|
27
|
Effect of Aerobic Exercise Training on Mood in People With Traumatic Brain Injury: A Pilot Study. J Head Trauma Rehabil 2018; 32:E49-E56. [PMID: 27603762 DOI: 10.1097/htr.0000000000000253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Exercise training is associated with elevations in mood in patients with various chronic illnesses and disabilities. However, little is known regarding the effect of exercise training on short and long-term mood changes in those with traumatic brain injury (TBI). OBJECTIVE The purpose of this study was to examine the time course of mood alterations in response to a vigorous, 12-week aerobic exercise training regimen in ambulatory individuals with chronic TBI (>6 months postinjury). METHODS Short and long-term mood changes were measured using the Profile of Mood States-Short Form, before and after specific aerobic exercise bouts performed during the 12-week training regimen. RESULTS Ten subjects with nonpenetrating TBI (6.6 ± 6.8 years after injury) completed the training regimen. A significant improvement in overall mood was observed following 12 weeks of aerobic exercise training (P = .04), with moderate to large effect sizes observed for short-term mood improvements following individual bouts of exercise. CONCLUSIONS Specific improvements in long-term mood state and short-term mood responses following individual exercise sessions were observed in these individuals with TBI. The largest improvement in overall mood was observed at 12 weeks of exercise training, with improvements emerging as early as 4 weeks into the training regimen.
Collapse
|
28
|
Hirsch MA, van Wegen EEH, Newman MA, Heyn PC. Exercise-induced increase in brain-derived neurotrophic factor in human Parkinson's disease: a systematic review and meta-analysis. Transl Neurodegener 2018; 7:7. [PMID: 29568518 PMCID: PMC5859548 DOI: 10.1186/s40035-018-0112-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/28/2018] [Indexed: 01/02/2023] Open
Abstract
Background Animal models of exercise and Parkinson’s disease (PD) have found that the physiologic use of exercise may interact with the neurodegenerative disease process, likely mediated by brain derived neurotrophic factor (BDNF). No reviews so far have assessed the methodologic quality of available intervention studies or have bundled the effect sizes of individual studies on exercise-induced effects on BDNF blood levels in human PD. Research design and methods We searched MEDLINE, EMBASE, Cochrane Library, PsycINFO and PubMed from inception to June 2017. Results Data aggregated from two randomized controlled trials and four pre-experimental studies with a total of 100 ambulatory patients with idiopathic PD (Hoehn/Yahr ≤3) found improvements in BDNF blood concentration levels in all 6 studies (two RCTs and 4 pre-experimental studies). Pooled BDNF level change scores from the 2 RCTs resulted in a significant homogeneous summary effect size (Standardized Mean Difference 2.06, 95% CI 1.36 to 2.76), and a significant heterogeneous SES for the motor part of the UPDRS-III examination (MD -5.53, 95% CI -10.42 to -0.64). Clinical improvements were noted in all studies using a variety of outcome measures. Limitations The evidence-base consists primarily of small studies with low to moderate methodological quality. Conclusions This review provides preliminary evidence for the effectiveness of physical exercise treatments for persons with PD on BDNF blood levels. Further research is needed. Electronic supplementary material The online version of this article (10.1186/s40035-018-0112-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark A Hirsch
- 1Carolinas Medical Center, Carolinas Rehabilitation, Department of Physical Medicine and Rehabilitation, 1100 Blythe Blvd, Charlotte, NC 28203 USA
| | - Erwin E H van Wegen
- 2Department of Rehabilitation Medicine, Amsterdam Movement Sciences/Amsterdam Neurosciences, VU University Medical Center, PO Box 7057, 1007 Amsterdam, MB The Netherlands
| | - Mark A Newman
- 1Carolinas Medical Center, Carolinas Rehabilitation, Department of Physical Medicine and Rehabilitation, 1100 Blythe Blvd, Charlotte, NC 28203 USA
| | - Patricia C Heyn
- 3Department of Physical Medicine and Rehabilitation, Anschutz Medical Campus, University of Colorado, Denver, USA
| |
Collapse
|
29
|
de la Tremblaye PB, O'Neil DA, LaPorte MJ, Cheng JP, Beitchman JA, Thomas TC, Bondi CO, Kline AE. Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neurosci Biobehav Rev 2018; 85:160-175. [PMID: 28576511 PMCID: PMC5709241 DOI: 10.1016/j.neubiorev.2017.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
The aim of this review is to discuss the research presented in a symposium entitled "Current progress in characterizing therapeutic strategies and challenges in experimental CNS injury" which was presented at the 2016 International Behavioral Neuroscience Society annual meeting. Herein we discuss diffuse and focal traumatic brain injury (TBI) and ensuing chronic behavioral deficits as well as potential rehabilitative approaches. We also discuss the effects of stress on executive function after TBI as well as the response of the endocrine system and regulatory feedback mechanisms. The role of the endocannabinoids after CNS injury is also discussed. Finally, we conclude with a discussion of antipsychotic and antiepileptic drugs, which are provided to control TBI-induced agitation and seizures, respectively. The review consists predominantly of published data.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darik A O'Neil
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan J LaPorte
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Midwestern University, Glendale, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Phoenix VA Healthcare System, Phoenix, AZ, United States
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
30
|
Dalise S, Cavalli L, Ghuman H, Wahlberg B, Gerwig M, Chisari C, Ambrosio F, Modo M. Biological effects of dosing aerobic exercise and neuromuscular electrical stimulation in rats. Sci Rep 2017; 7:10830. [PMID: 28883534 PMCID: PMC5589775 DOI: 10.1038/s41598-017-11260-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022] Open
Abstract
Aerobic exercise (AE) and non-aerobic neuromuscular electric stimulation (NMES) are common interventions used in physical therapy. We explored the dose-dependency (low, medium, high) of these interventions on biochemical factors, such as brain derived neurotrophic growth factor (BDNF), vascular endothelial growth factor-A (VEGF-A), insulin-like growth factor-1 (IGF-1) and Klotho, in the blood and brain of normal rats, as well as a treadmill-based maximum capacity test (MCT). A medium dose of AE produced the most improvement in MCT with dose-dependent changes in Klotho in the blood. A dose-dependent increase of BDNF was evident following completion of an NMES protocol, but there was no improvement in MCT performance. Gene expression in the hippocampus was increased after both AE and NMES, with IGF-1 being a signaling molecule that correlated with MCT performance in the AE conditions, but also highly correlated with VEGF-A and Klotho. Blood Klotho levels can serve as a biomarker of therapeutic dosing of AE, whereas IGF-1 is a key molecule coupled to gene expression of other molecules in the hippocampus. This approach provides a translatable paradigm to investigate the mode and mechanism of action of interventions employed in physical therapy that can improve our understanding of how these factors change under pathological conditions.
Collapse
Affiliation(s)
- Stefania Dalise
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Loredana Cavalli
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Harmanvir Ghuman
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Pittsburgh, Pennsylvania, USA
| | | | | | - Carmelo Chisari
- University Hospital of Pisa, Department of Neuroscience, Unit of Neurorehabilitation, Pisa, Italy
| | - Fabrisia Ambrosio
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Pittsburgh, Pennsylvania, USA.,Department of Physical Medicine and Rehabilitation, Pittsburgh, Pennsylvania, USA
| | - Michel Modo
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA. .,Department of Bioengineering, Pittsburgh, Pennsylvania, USA. .,Department of Radiology, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
31
|
Crosson B, Hampstead BM, Krishnamurthy LC, Krishnamurthy V, McGregor KM, Nocera JR, Roberts S, Rodriguez AD, Tran SM. Advances in neurocognitive rehabilitation research from 1992 to 2017: The ascension of neural plasticity. Neuropsychology 2017; 31:900-920. [PMID: 28857600 DOI: 10.1037/neu0000396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The last 25 years have seen profound changes in neurocognitive rehabilitation that continue to motivate its evolution. Although the concept of nervous system plasticity was discussed by William James (1890), the foundation for experience-based plasticity had not reached the critical empirical mass to seriously impact rehabilitation research until after 1992. The objective of this review is to describe how the emergence of neural plasticity has changed neurocognitive rehabilitation research. METHOD The important developments included (a) introduction of a widely available tool that could measure brain plasticity (i.e., functional MRI); (b) development of new structural imaging techniques that could define limits of and opportunities for neural plasticity; (c) deployment of noninvasive brain stimulation to leverage neural plasticity for rehabilitation; (d) growth of a literature indicating that exercise has positively impacts neural plasticity, especially for older persons; and (e) enhancement of neural plasticity by creating interventions that generalize beyond the boundaries of treatment activities. Given the massive literature, each of these areas is developed by example. RESULTS The expanding influence of neural plasticity has provided new models and tools for neurocognitive rehabilitation in neural injuries and disorders, as well as methods for measuring neural plasticity and predicting its limits and opportunities. Early clinical trials have provided very encouraging results. CONCLUSION Now that neural plasticity has gained a firm foothold, it will continue to influence the evolution of neurocognitive rehabilitation research for the next 25 years and advance rehabilitation for neural injuries and disease. (PsycINFO Database Record
Collapse
Affiliation(s)
- Bruce Crosson
- Veterans Affairs Rehabilitation Research and Development Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center
| | - Benjamin M Hampstead
- Neuropsychology Section, Department of Mental Health Services, Veterans Affairs Ann Arbor Healthcare Systems
| | | | | | | | | | | | - Amy D Rodriguez
- Atlanta Veterans Affairs Rehabilitation Research and Development Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center
| | | |
Collapse
|
32
|
Abstract
PURPOSE To examine the safety and tolerability of clinical graded aerobic treadmill testing in recovering adolescent moderate and severe traumatic brain injury (TBI) patients referred to a multidisciplinary pediatric concussion program. METHODS We completed a retrospective case series of two moderate and five severe TBI patients (mean age, 17.3 years) who underwent initial Buffalo Concussion Treadmill Testing at a mean time of 71.6 days (range, 55-87) postinjury. RESULTS Six patients completed one graded aerobic treadmill test each and one patient underwent initial and repeat testing. There were no complications. Five initial treadmill tests were completely tolerated and allowed an accurate assessment of exercise tolerance. Two initial tests were terminated early by the treatment team because of neurological and cardiorespiratory limitations. As a result of testing, two patients were cleared for aerobic exercise as tolerated and four patients were treated with individually tailored submaximal aerobic exercise programs resulting in subjective improvement in residual symptoms and/or exercise tolerance. Repeat treadmill testing in one patient performed after 1 month of treatment with submaximal aerobic exercise prescription was suggestive of improved exercise tolerance. One patient was able to tolerate aerobic exercise following surgery for posterior glottic stenosis. CONCLUSIONS Preliminary results suggest that graded aerobic treadmill testing is a safe, well tolerated, and clinically useful tool to assess exercise tolerance in appropriately selected adolescent patients with TBI. Future prospective studies are needed to evaluate the effect of tailored submaximal aerobic exercise prescription on exercise tolerance and patient outcomes in recovering adolescent moderate and severe TBI patients.
Collapse
|
33
|
Abstract
BACKGROUND Different forms of conscious and planned physical exercise and activity that individuals perform improve not only physical but also psychological health, well-being, and both physical and intellectual performance. Here we put forward and test the predictive validity of the Archer-Garcia Ratio, a brief measure for exercise frequency computed using participants' responses to two questions. METHOD The participants (N = 158) were recruited from a training facility in the south of Sweden. The Archer-Garcia Ratio was constructed by standardizing (i.e., z-scores) and then summarizing individuals' responses to two questions: "How often do you exercise?" (1 = never, 5 = 5 times/week or more) and "Estimate the level of effort when you exercise" (1 = none or very low, 10 = very high). Participants responded also to the Godin Leisure-Time Exercise Questionnaire and allowed the collection of electronic data to track the number of times they had trained six months before and both six and twelve months after the survey. RESULTS The Archer-Garcia Ratio predicted, moderately, how often individuals had trained during the six months before and both six months and twelve months after the survey. CONCLUSION The Archer-Garcia Ratio is a brief and valid self-report measure that can be used to predict actual retrospective and prospective exercise behavior. It offers a simple and straightforward form to estimate adherence, compliance and propensities of peoples' exercise habits.
Collapse
Affiliation(s)
- Danilo Garcia
- Blekinge Centre of Competence, Blekinge County Council, Karlskrona, Sweden.,Department of Psychology, University of Gothenburg, Gothenburg, Sweden.,Network for Empowerment and Well-Being, Sweden.,Department of Psychology, Lund University, Lund, Sweden
| | - Thiago Medeiros da Costa Daniele
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.,Network for Empowerment and Well-Being, Sweden.,Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil.,Laboratório do sono e ritmos biológicos, Universidade Federal do Ceará, Brazil
| | - Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.,Network for Empowerment and Well-Being, Sweden
| |
Collapse
|
34
|
Chio CC, Lin HJ, Tian YF, Chen YC, Lin MT, Lin CH, Chang CP, Hsu CC. Exercise attenuates neurological deficits by stimulating a critical HSP70/NF-κB/IL-6/synapsin I axis in traumatic brain injury rats. J Neuroinflammation 2017; 14:90. [PMID: 28438174 PMCID: PMC5404305 DOI: 10.1186/s12974-017-0867-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background Despite previous evidence for a potent inflammatory response after a traumatic brain injury (TBI), it is unknown whether exercise preconditioning (EP) improves outcomes after a TBI by modulating inflammatory responses. Methods We performed quantitative real-time PCR (qPCR) to quantify the genes encoding 84 cytokines and chemokines in the peripheral blood and used ELISA to determine both the cerebral and blood levels of interleukin-6 (IL-6). We also performed the chromatin immunoprecipitation (ChIP) assay to evaluate the extent of nuclear factor kappa-B (NF-κB) binding to the DNA elements in the IL-6 promoter regions. Also, we adopted the Western blotting assay to measure the cerebral levels of heat shock protein (HSP) 70, synapsin I, and β-actin. Finally, we performed both histoimmunological and behavioral assessment to measure brain injury and neurological deficits, respectively. Results We first demonstrated that TBI upregulated nine pro-inflammatory and/or neurodegenerative messenger RNAs (mRNAs) in the peripheral blood such as CXCL10, IL-18, IL-16, Cd-70, Mif, Ppbp, Ltd, Tnfrsf 11b, and Faslg. In addition to causing neurological injuries, TBI also upregulated the following 14 anti-inflammatory and/or neuroregenerative mRNAs in the peripheral blood such as Ccl19, Ccl3, Cxcl19, IL-10, IL-22, IL-6, Bmp6, Ccl22, IL-7, Bmp7, Ccl2, Ccl17, IL-1rn, and Gpi. Second, we observed that EP inhibited both neurological injuries and six pro-inflammatory and/or neurodegenerative genes (Cxcl10, IL-18, IL-16, Cd70, Mif, and Faslg) but potentiated four anti-inflammatory and/or neuroregenerative genes (Bmp6, IL-10, IL-22, and IL-6). Prior depletion of cerebral HSP70 with gene silence significantly reversed the beneficial effects of EP in reducing neurological injuries and altered gene profiles after a TBI. A positive Pearson correlation exists between IL-6 and HSP70 in the peripheral blood or in the cerebral levels. In addition, gene silence of cerebral HSP70 significantly reduced the overexpression of NF-κB, IL-6, and synapsin I in the ipsilateral brain regions after an EP in rats. Conclusions TBI causes neurological deficits associated with stimulating several pro-inflammatory gene profiles but inhibiting several anti-inflammatory gene profiles of cytokines and chemokines. Exercise protects against neurological injuries via stimulating an anti-inflammatory HSP70/NF-κB/IL-6/synapsin I axis in the injured brains.
Collapse
Affiliation(s)
- Chung-Ching Chio
- Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Yu-Feng Tian
- Division of General Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | - Yu-Chieh Chen
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | | | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan. .,Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Chien-Chin Hsu
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan. .,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan.
| |
Collapse
|
35
|
Efficiency of an Active Rehabilitation Intervention in a Slow-to-Recover Paediatric Population following Mild Traumatic Brain Injury: A Pilot Study. JOURNAL OF SPORTS MEDICINE 2016; 2016:5127374. [PMID: 28078321 PMCID: PMC5203916 DOI: 10.1155/2016/5127374] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/12/2016] [Accepted: 10/23/2016] [Indexed: 01/13/2023]
Abstract
Objective. The aim of this study was to identify whether the addition of an individualised Active Rehabilitation Intervention to standard care influences recovery of young patients who are slow-to-recover following a mTBI. Methods. Fifteen participants aged 15 ± 2 years received standard care and an individualised Active Rehabilitation Intervention which included (1) low- to high-intensity aerobic training; (2) sport-specific coordination exercises; and (3) therapeutic balance exercises. The following criteria were used to measure the resolution of signs and symptoms of mTBI: (1) absence of postconcussion symptoms for more than 7 consecutive days; (2) cognitive function corresponding to normative data; and (3) absence of deficits in coordination and balance. Results. The Active Rehabilitation Intervention lasted 49 ± 17 days. The duration of the intervention was correlated with self-reported participation ([Formula: see text]%, r = -0.792, p < 0.001). The average postconcussion symptom inventory (PCSI) score went from a total of 36.85 ± 23.21 points to 4.31 ± 5.04 points after the intervention (Z = -3.18, p = 0.001). Conclusion. A progressive submaximal Active Rehabilitation Intervention may represent an important asset in the recovery of young patients who are slow-to-recover following a mTBI.
Collapse
|
36
|
Kolakowsky-Hayner SA, Bellon K, Toda K, Bushnik T, Wright J, Isaac L, Englander J. A randomised control trial of walking to ameliorate brain injury fatigue: a NIDRR TBI model system centre-based study. Neuropsychol Rehabil 2016; 27:1002-1018. [PMID: 27733079 DOI: 10.1080/09602011.2016.1229680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fatigue is one of the most commonly reported sequelae after traumatic brain injury (TBI). This study evaluated the impact of a graduated physical activity programme on fatigue after TBI. Using a prospective randomised single-blind crossover design, 123 individuals with TBI, over the age of 18, were enrolled. Interventions included a home-based walking programme utilising a pedometer to track daily number of steps at increasing increments accompanied by tapered coaching calls over a 12-week period. Nutritional counselling with the same schedule of coaching calls served as the control condition. Main outcome measures included: the Global Fatigue Index (GFI), the Barrow Neurological Institute (BNI) Fatigue Scale Overall Severity Index Score, and the Multidimensional Fatigue Inventory (MFI). Step counts improved over time regardless of group assignment. The walking intervention led to a decrease in GFI, BNI Total, and MFI General scores. Participants reported less fatigue at the end of the active part of the intervention (24 weeks) and after a wash out period (36 weeks) as measured by the BNI Overall. The study suggests that walking can be used as an efficient and cost-effective tool to improve fatigue in persons who have sustained a TBI.
Collapse
Affiliation(s)
- Stephanie A Kolakowsky-Hayner
- a Department of Physical Medicine and Rehabilitation , Santa Clara Valley Medical Center , San Jose , CA , USA.,b Brain Trauma Foundation , New York, NY and Campbell, CA , USA
| | - Kimberly Bellon
- a Department of Physical Medicine and Rehabilitation , Santa Clara Valley Medical Center , San Jose , CA , USA
| | - Ketra Toda
- a Department of Physical Medicine and Rehabilitation , Santa Clara Valley Medical Center , San Jose , CA , USA
| | - Tamara Bushnik
- c NYU Langone School of Medicine , Rusk Institute for Rehabilitation Medicine , New York , NY , USA
| | - Jerry Wright
- a Department of Physical Medicine and Rehabilitation , Santa Clara Valley Medical Center , San Jose , CA , USA
| | - Linda Isaac
- a Department of Physical Medicine and Rehabilitation , Santa Clara Valley Medical Center , San Jose , CA , USA
| | - Jeffrey Englander
- a Department of Physical Medicine and Rehabilitation , Santa Clara Valley Medical Center , San Jose , CA , USA.,d Division of Physical Medicine and Rehabilitation in Department of Orthopedic Surgery , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
37
|
Lendraitienė E, Petruševičienė D, Savickas R, Žemaitienė I, Mingaila S. The impact of physical therapy in patients with severe traumatic brain injury during acute and post-acute rehabilitation according to coma duration. J Phys Ther Sci 2016; 28:2048-54. [PMID: 27512262 PMCID: PMC4968504 DOI: 10.1589/jpts.28.2048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/07/2016] [Indexed: 01/18/2023] Open
Abstract
[Purpose] The aim of study was to evaluate the impact of physical therapy on the recovery of motor and mental status in patients who sustained a severe traumatic brain injury, according to coma duration in acute and post-acute rehabilitation. [Subjects and Methods] The study population comprised patients with levels of consciousness ranging from 3 to 8 according to Glasgow Coma Scale score. The patients were divided into 2 groups based on coma duration as follows: group 1, those who were in a coma up to 1 week, and group 2, those who were in a coma for more than 2 weeks. The recovery of the patients' motor function was evaluated according to the Motor Assessment Scale and the recovery of mental status according to the Mini-Mental State Examination. [Results] The evaluation of motor and mental status recovery revealed that the patients who were in a coma up to 1 week recovered significantly better after physical therapy during the acute rehabilitation than those who were in a coma for longer than 2 weeks. [Conclusion] The recovery of motor and mental status of the patients in acute rehabilitation was significantly better for those in a coma for a shorter period.
Collapse
Affiliation(s)
- Eglė Lendraitienė
- Department of Rehabilitation, Medical Academy of Lithuanian
University of Health Sciences, Lithuania
- Department of Neurorehabilitation, Hospital of Lithuanian
University of Health Sciences, Lithuania
| | - Daiva Petruševičienė
- Department of Rehabilitation, Medical Academy of Lithuanian
University of Health Sciences, Lithuania
| | - Raimondas Savickas
- Department of Rehabilitation, Medical Academy of Lithuanian
University of Health Sciences, Lithuania
- Department of Neurorehabilitation, Hospital of Lithuanian
University of Health Sciences, Lithuania
| | - Ieva Žemaitienė
- Department of Rehabilitation, Medical Academy of Lithuanian
University of Health Sciences, Lithuania
| | - Sigitas Mingaila
- Department of Rehabilitation, Medical Academy of Lithuanian
University of Health Sciences, Lithuania
- Department of Neurorehabilitation, Hospital of Lithuanian
University of Health Sciences, Lithuania
| |
Collapse
|
38
|
Effects of Moderate Aerobic Exercise on Cognitive Abilities and Redox State Biomarkers in Older Adults. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2545168. [PMID: 27195073 PMCID: PMC4852338 DOI: 10.1155/2016/2545168] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/23/2016] [Indexed: 01/26/2023]
Abstract
We used a moderate aerobic exercise program for 24 weeks to measure the positive impact of physical activity on oxidative stress and inflammatory markers and its association with cognitive performance in healthy older adults. A total of 100 healthy subjects (65–95 Yrs) were randomly classified into two groups: control group (n = 50) and exercise group (n = 50). Cognitive functioning, physical activity score, MDA, 8-OHdG, TAC, and hs-CRP were assessed using LOTCA battery, prevalidated PA questionnaire, and immunoassay techniques. LOTCA 7-set scores of cognitive performance showed a significant correlation with physical activity status and the regulation of both oxidative stress free radicals and inflammatory markers in all older subjects following 24 weeks of moderate exercise. Physically active persons showed a higher cognitive performance along with reduction in the levels of MDA, 8-OHdG, and hs-CRP and increase in TAC activity compared with sedentary participants. Cognitive performance correlated positively with the increase in TAC activity and physical fitness scores and negatively with MDA, 8-OHdG, and hs-CRP, respectively. There was a significant improvement in motor praxis, vasomotor organization, thinking operations, and attention and concentration among older adults. In conclusion, moderate aerobic training for 24 weeks has a positive significant effect in improving cognitive functions via modulating redox and inflammatory status of older adults.
Collapse
|
39
|
Abstract
Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, 430 50, Gothenburg, Sweden.
| | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN, 37614, USA
| |
Collapse
|
40
|
Archer T, Kostrzewa RM. Exercise and Nutritional Benefits in PD: Rodent Models and Clinical Settings. Curr Top Behav Neurosci 2016; 29:333-351. [PMID: 26728168 DOI: 10.1007/7854_2015_409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Physical exercise offers a highly effective health-endowering activity as has been evidence using rodent models of Parkinson's disease (PD). It is a particularly useful intervention in individuals employed in sedentary occupations or afflicted by a neurodegenerative disorder, such as PD. The several links between exercise and quality-of-life, disorder progression and staging, risk factors and symptoms-biomarkers in PD all endower a promise for improved prognosis. Nutrition provides a strong determinant for disorder vulnerability and prognosis with fish oils and vegetables with a mediterranean diet offering both protection and resistance. Three factors determining the effects of exercise on disorder severity of patients may be presented: (i) Exercise effects upon motor impairment, gait, posture and balance, (ii) Exercise reduction of oxidative stress, stimulation of mitochondrial biogenesis and up-regulation of autophagy, and (iii) Exercise stimulation of dopamine (DA) neurochemistry and trophic factors. Running-wheel performance, as measured by distance run by individual mice from different treatment groups, was related to DA-integrity, indexed by striatal DA levels. Finally, both nutrition and exercise may facilitate positive epigenetic outcomes, such as lowering the dosage of L-Dopa required for a therapeutic effect.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
| | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37604, USA
| |
Collapse
|
41
|
A method for reproducible measurements of serum BDNF: comparison of the performance of six commercial assays. Sci Rep 2015; 5:17989. [PMID: 26656852 PMCID: PMC4675070 DOI: 10.1038/srep17989] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/10/2015] [Indexed: 12/18/2022] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) has attracted increasing interest as potential biomarker to support the diagnosis or monitor the efficacy of therapies in brain disorders. Circulating BDNF can be measured in serum, plasma or whole blood. However, the use of BDNF as biomarker is limited by the poor reproducibility of results, likely due to the variety of methods used for sample collection and BDNF analysis. To overcome these limitations, using sera from 40 healthy adults, we compared the performance of five ELISA kits (Aviscera-Bioscience, Biosensis, Millipore-ChemiKineTM, Promega-Emax®, R&D-System-Quantikine®) and one multiplexing assay (Millipore-Milliplex®). All kits showed 100% sample recovery and comparable range. However, they exhibited very different inter-assay variations from 5% to 20%. Inter-assay variations were higher than those declared by the manufacturers with only one exception which also had the best overall performance. Dot-blot analysis revealed that two kits selectively recognize mature BDNF, while the others reacted with both pro-BDNF and mature BDNF. In conclusion, we identified two assays to obtain reliable measurements of human serum BDNF, suitable for future clinical applications.
Collapse
|
42
|
Objective Assessment of Activity in Inpatients with Traumatic Brain Injury: Initial Findings. BRAIN IMPAIR 2015. [DOI: 10.1017/brimp.2015.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose:Use accelerometers to examine the physical activity behaviours of individuals following TBI undergoing inpatient rehabilitation.Method:Twenty-one individuals with Traumatic brain injury (TBI) undergoing inpatient rehabilitation (9 females, 12 males;Mage = 43.8 ± 14.7 years;MGCS = 9.1 ± 4.3;Mtime since injury = 40.8 ± 22.1 days;Mlength of stay (LOS) = 30 ± 14 days) wore accelerometers for an average of 8.4 ± 2.0 consecutive days (1440 minutes/day). Activity counts (AC) were collected at 1 minute epochs and descriptive statistics were calculated to assess intensity of activity and time spent being active and sedentary.Results:During scheduled therapy, time individuals completed an average of 161.4 ± 65.5 AC/minute, which decreased to 114.5 ± 51.3 during non-therapy time and 22.2 ± 10 when sleeping. Using population level cut points, individuals were on average considered inactive during therapy, inactive or sedentary during non-therapy time, and only one participant spent >1 minute in moderate intensity activity. The mean length of active and sedentary bouts was 9 minutes.Discussion:Findings indicate that the amount and intensity of activity completed is low amongst individuals completing inpatient rehabilitation after TBI, with the majority considered sedentary or inactive. While the sample is small, it is important to develop and implement safe and effective strategies to increase activity levels during rehabilitation.
Collapse
|
43
|
|
44
|
Alghadir AH, Gabr SA, Aly FA. The effects of four weeks aerobic training on saliva cortisol and testosterone in young healthy persons. J Phys Ther Sci 2015; 27:2029-33. [PMID: 26311920 PMCID: PMC4540811 DOI: 10.1589/jpts.27.2029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/17/2015] [Indexed: 01/10/2023] Open
Abstract
[Purpose] The purpose of this study was to evaluate the effect of 4 weeks moderate aerobic exercise on outcome measures of saliva stress hormones and lactate levels in healthy adult volunteers. [Subjects and Methods] Sixteen healthy students with an age range of 15-25 years participated in this study. The participants performed an exercise test of moderate intensity for 4 weeks, three times per week. The exercise was treadmill walking. Saliva concentrations of cortisol, testosterone and lactate dehydrogenase (LDH) were measured before and after the 4 weeks of moderate aerobic training using immunoassay techniques. [Results] After 4 weeks of exercise, there were significant increases in cortisol, free testosterone levels, and LDH activity along with a significant decrease in the ratios between testosterone and cortisol levels. No significant correlations were found among the studied parameters in the resting stage, a result which supports the positive effect of exercise on stress hormones following 4 weeks of training. [Conclusion] The results suggest that four weeks exercise of moderate intensity significantly affects the salivary stress hormones of young healthy volunteers. The data support the importance of salivary stress hormones as potential biological markers especially for older ages. However, more research is required to validate these biological markers which determine the host response to physical activity.
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Rehabilitation Research Chair (RRC), Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair (RRC), Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia ; Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt
| | - Farag A Aly
- Rehabilitation Research Chair (RRC), Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia ; Faculty of Physical Therapy, Cairo University, Egypt
| |
Collapse
|
45
|
Archer T, Kostrzewa RM. Physical Exercise Alleviates Health Defects, Symptoms, and Biomarkers in Schizophrenia Spectrum Disorder. Neurotox Res 2015; 28:268-80. [PMID: 26174041 DOI: 10.1007/s12640-015-9543-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/08/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023]
Abstract
Schizophrenia spectrum disorders are characterized by symptom profiles consisting of positive and negative symptoms, cognitive impairment, and a plethora of genetic, epigenetic, and phenotypic biomarkers. Assorted animal models of these disorders and clinical neurodevelopmental indicators have implicated neurodegeneration as an element in the underlying pathophysiology. Physical exercise or activity regimes--whether aerobic, resistance, or endurance--ameliorate regional brain and functional deficits not only in affected individuals but also in animal models of the disorder. Cognitive deficits, often linked to regional deficits, were alleviated by exercise, as were quality-of-life, independent of disorder staging and risk level. Apoptotic processes intricate to the etiopathogenesis of schizophrenia were likewise attenuated by physical exercise. There is also evidence of manifest benefits endowed by physical exercise in preserving telomere length and integrity. Not least, exercise improves overall health and quality-of-life. The notion of scaffolding as the outcome of physical exercise implies the "buttressing" of regional network circuits, neurocognitive domains, anti-inflammatory defenses, maintenance of telomeric integrity, and neuro-reparative and regenerative processes.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, 405 30, Gothenburg, Sweden,
| | | |
Collapse
|
46
|
Archer T, Garcia D. Exercise and Dietary Restriction for Promotion of Neurohealth Benefits. Health (London) 2015. [DOI: 10.4236/health.2015.71016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Garcia D, Archer T. Positive affect and age as predictors of exercise compliance. PeerJ 2014; 2:e694. [PMID: 25548730 PMCID: PMC4273932 DOI: 10.7717/peerj.694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/21/2014] [Indexed: 01/24/2023] Open
Abstract
Physical exercise is linked to individuals whose affect profiles are invariably positive and it induces anti-apoptotic and anti-excitotoxic effects, buttressing blood–brain barrier intactness in both healthy individuals and those suffering from disorders accompanying overweight and obesity. In this regard, exercise offers a unique non-pharmacologic, non-invasive intervention that incorporates different regimes, whether dynamic or static, endurance, or resistance. In this brief report we present a self-reported study carried out on an adolescent and adult population (N = 280, 144 males and 136 females), which indicated that the propensity and compliance for exercise, measured as the “Archer ratio”, was predicted by a positive affect. This association is discussed from the perspective of health, well-being, affect dimensions, and age.
Collapse
Affiliation(s)
- Danilo Garcia
- Institute of Neuroscience and Physiology, Centre for Ethics, Law and Mental Health (CELAM), University of Gothenburg , Gothenburg , Sweden ; Network for Empowerment and Well-Being , Sweden
| | - Trevor Archer
- Network for Empowerment and Well-Being , Sweden ; Department of Psychology, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
48
|
Venugopalan J, Cheng CW, Wang MD. MotionTalk: Personalized home rehabilitation system for assisting patients with impaired mobility. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2014; 2014:455-463. [PMID: 28111639 DOI: 10.1145/2649387.2649430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Physical injury, stroke, trauma, traumatic brain injury and spinal cord injury rank among the top causes of disability. There are a total of 54 million people in the US requiring rehabilitative assistance of which 15.3 million people are in the age groups of 18-44. However, the compliance rate for patients performing rehabilitation exercises in the home environment is poor. In this paper, we design and prototype a personalized home rehabilitation system, MotionTalk, for the real time quantitative assessment of mobility. Performance of rehabilitation is designed to be assessed using the changes in mobility, reflected in the exercises performed by patients at home with respect to the same exercises performed in the clinic. Our system is capable of capturing motion using Microsoft Kinect and analyzing the position and rotation information to give scores for assessing rehabilitation progress. In comparison to conventional rehabilitation systems, MotionTalk is an inexpensive (<$150 compared to conventional systems costing >$1000), less intrusive and personalized home rehabilitation system, which was developed and tested using data from able-bodied volunteers at Georgia Institute of Technology.
Collapse
Affiliation(s)
- Janani Venugopalan
- Wallace H. Coulter department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332
| | - Chih-Wen Cheng
- Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332
| | - May D Wang
- Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332; Wallace H. Coulter department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332
| |
Collapse
|
49
|
On the role of sadness in the psychopathology of anorexia nervosa. Psychiatry Res 2014; 215:711-7. [PMID: 24447647 DOI: 10.1016/j.psychres.2013.12.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 12/14/2013] [Accepted: 12/27/2013] [Indexed: 01/13/2023]
Abstract
Recent models on the development and maintenance of eating disorders propose negative emotions to be important precursors for the occurrence of eating disorder symptomatology. In fact, previous research on bulimia nervosa (BN) and binge eating disorder provides evidence that negative emotions are an antecedent condition for binge eating. However, there is a lack of research examining the influence of negative emotions on restrictive eating and exercising in individuals with anorexia nervosa (AN). In an experimental study, women with AN (n=39) and BN (n=34) as well as a non-eating disordered control group (CG; n=34) watched a sadness-inducing film clip. Before and after the film clip participants rated their current desire to engage in dietary restriction (DTR) and desire to exercise (DTE). Main results reveal that DTR significantly increased after the film clip in women with AN only, while DTE decreased over time in all groups. Results are in line with the notion that negative emotions have a prominent influence on the core eating pathology in AN.
Collapse
|
50
|
|