1
|
Patat D, Nisari M, Ulger H, Ertekin T, Dagli E, Cayan D, Al O, Guler H, Sengul GF, Tastan M. In vitro effect of vitaminB 12 on embyro growth by induction of hypoxia in culture. Toxicol Res (Camb) 2024; 13:tfae207. [PMID: 39664499 PMCID: PMC11631179 DOI: 10.1093/toxres/tfae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024] Open
Abstract
In this study, effects of vitaminB12 on embryonic development have been investigated by supplying vitaminB12 on a hypoxia-induced embryo culture. 9.5-day-old embryos from Wistar albino adult pregnant rats were used in our experimental set up.10 μM and 100 μM vitaminB12 were added to culture medium which is then exposed to in vitro hypoxia. Additionally, 11.5-day-old embryos and yolksacs were examined morphologically. Different vitaminB12 doses are compared within experimental groups. It was found that both control and experimental groups in 11.5-day-old embryos are at same developmental stage. It was also determined that oxygen deficiency influenced embryonic development and yolk sac vascularity in hypoxia group, are lagging behind in all experimental groups (P < 0.05). However, the development of vitaminB12 embryos were similar to control group under normoxic conditions (P > 0.05). It was also observed that development was compensated through supplement of vitaminB12 to hypoxia group (P < 0.05). It was indicated that the development in H + 100 μM vitB12 groups was quite close to control group. However, development of H + 10 μM vitB12 embryos were in parallel with hypoxic group. Furthermore, H + 100 μM vitB12 group showed higher embryonic development than H + 10 μM vitB12 group (P < 0.05).VitaminB12 treatment has been used to prevent intrauterine growth restriction which can be caused by many different pharmacological agents. However, nobody has investigated effects of vitaminB12 on hypoxia-induced early embryo growth retardation. In the light of our findings, administration of 100 μM vitaminB12 restores damage of embryonic development due to hypoxia and this application also increases embryonic vascularity and circulation. Thus, supplementation of vitaminB12 can be offered as a therapeutic approach towards cell death and diseases such as neurovascular and cardiovascular diseases and in the near future.
Collapse
Affiliation(s)
- Dilara Patat
- Ankara Medipol University, Faculty of Medicine, Department of Anatomy, Anafartalar Campus, Eti, Celal Bayar Blv. No: 88, 06570, Ankara, Turkey
- Erciyes University, Faculty of Medicine, Department of Anatomy, Yenidoğan Mahallesi Turhan Baytop Sokak No: 1, 38280, Kayseri, Turkey
| | - Mehtap Nisari
- Erciyes University, Faculty of Medicine, Department of Anatomy, Yenidoğan Mahallesi Turhan Baytop Sokak No: 1, 38280, Kayseri, Turkey
| | - Harun Ulger
- Erciyes University, Faculty of Medicine, Department of Anatomy, Yenidoğan Mahallesi Turhan Baytop Sokak No: 1, 38280, Kayseri, Turkey
| | - Tolga Ertekin
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Anatomy, Zafer Health Complex Dörtyol Mah. 2078 Street, No: 3, A Block, Pk. 03030, Afyonkarahisar, Turkey
| | - Ertugrul Dagli
- Erciyes University, Institute of Health Sciences, Kayseri, Turkey
| | - Dicle Cayan
- Erciyes University, Faculty of Medicine, Department of Anatomy, Yenidoğan Mahallesi Turhan Baytop Sokak No: 1, 38280, Kayseri, Turkey
- Nigde Omer Halis Demir University, Nigde Zubeyde Hanım School of Health, Department of Nursing Management, Niğde Zübeyde Hanım Sağlık Yüksekokulu, Derbent Yerleşkesi, Atatürk Blv., 51200, Nigde, Turkey
| | - Ozge Al
- Erciyes University, Faculty of Medicine, Department of Anatomy, Yenidoğan Mahallesi Turhan Baytop Sokak No: 1, 38280, Kayseri, Turkey
| | - Hatice Guler
- Erciyes University, Faculty of Medicine, Department of Anatomy, Yenidoğan Mahallesi Turhan Baytop Sokak No: 1, 38280, Kayseri, Turkey
| | - Goksemin Fatma Sengul
- Ankara Medipol University, Faculty of Medicine, Department of Medical Biochemistry, Anafartalar Campus, Eti, Celal Bayar Blv. No: 88, 06570, Ankara, Turkey
| | - Mustafa Tastan
- Erciyes University, Institute of Health Sciences, Kayseri, Turkey
| |
Collapse
|
2
|
Tan X, Neslund EM, Fentis K, Ding ZM. Fluorocitrate inhibition of astrocytes reduces nicotine self-administration and alters extracellular levels of glutamate and dopamine within the nucleus accumbens in male wistar rats. Neuropharmacology 2024; 255:110001. [PMID: 38750804 PMCID: PMC11156530 DOI: 10.1016/j.neuropharm.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Emerging evidence suggests an important role of astrocytes in mediating behavioral and molecular effects of commonly misused drugs. Passive exposure to nicotine alters molecular, morphological, and functional properties of astrocytes. However, a potential involvement of astrocytes in nicotine reinforcement remains largely unexplored. The overall hypothesis tested in the current study is that astrocytes play a critical role in nicotine reinforcement. Protein levels of the astrocyte marker glial fibrillary acidic protein (GFAP) were examined in key mesocorticolimbic regions following chronic nicotine intravenous self-administration. Fluorocitrate, a metabolic inhibitor of astrocytes, was tested for its effects on behaviors related to nicotine reinforcement and relapse. Effects of fluorocitrate on extracellular neurotransmitter levels, including glutamate, GABA, and dopamine, were determined with microdialysis. Chronic nicotine intravenous self-administration increased GFAP expression in the nucleus accumbens core (NACcr), but not other key mesocorticolimbic regions, compared to saline intravenous self-administration. Both intra-ventricular and intra-NACcr microinjection of fluorocitrate decreased nicotine self-administration. Intra-NACcr fluorocitrate microinjection also inhibited cue-induced reinstatement of nicotine seeking. Local perfusion of fluorocitrate decreased extracellular glutamate levels, elevated extracellular dopamine levels, but did not alter extracellular GABA levels in the NACcr. Fluorocitrate did not alter basal locomotor activity. These results indicate that nicotine reinforcement upregulates the astrocyte marker GFAP expression in the NACcr, metabolic inhibition of astrocytes attenuates nicotine reinforcement and relapse, and metabolic inhibition of astrocytes disrupts extracellular dopamine and glutamate transmission. Overall, these findings suggest that astrocytes play an important role in nicotine reinforcement and relapse, potentially through regulation of extracellular glutamate and dopamine neurotransmission.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Elizabeth M Neslund
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Khawla Fentis
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
3
|
Kremsky I, Ma Q, Li B, Dasgupta C, Chen X, Ali S, Angeloni S, Wang C, Zhang L. Fetal hypoxia results in sex- and cell type-specific alterations in neonatal transcription in rat oligodendrocyte precursor cells, microglia, neurons, and oligodendrocytes. Cell Biosci 2023; 13:58. [PMID: 36932456 PMCID: PMC10022003 DOI: 10.1186/s13578-023-01012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Fetal hypoxia causes vital, systemic, developmental malformations in the fetus, particularly in the brain, and increases the risk of diseases in later life. We previously demonstrated that fetal hypoxia exposure increases the susceptibility of the neonatal brain to hypoxic-ischemic insult. Herein, we investigate the effect of fetal hypoxia on programming of cell-specific transcriptomes in the brain of neonatal rats. RESULTS We obtained RNA sequencing (RNA-seq) data from neurons, microglia, oligodendrocytes, A2B5+ oligodendrocyte precursor cells, and astrocytes from male and female neonatal rats subjected either to fetal hypoxia or control conditions. Substantial transcriptomic responses to fetal hypoxia occurred in neurons, microglia, oligodendrocytes, and A2B5+ cells. Not only were the transcriptomic responses unique to each cell type, but they also occurred with a great deal of sexual dimorphism. We validated differential expression of several genes related to inflammation and cell death by Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). Pathway and transcription factor motif analyses suggested that the NF-kappa B (NFκB) signaling pathway was enriched in the neonatal male brain due to fetal hypoxia, and we verified this result by transcription factor assay of NFκB-p65 in whole brain. CONCLUSIONS Our study reveals a significant impact of fetal hypoxia on the transcriptomes of neonatal brains in a cell-specific and sex-dependent manner, and provides mechanistic insights that may help explain the development of hypoxic-ischemic sensitive phenotypes in the neonatal brain.
Collapse
Affiliation(s)
- Isaac Kremsky
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Qingyi Ma
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Bo Li
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Xin Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Samir Ali
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Shawnee Angeloni
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Charles Wang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA. .,Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
4
|
Wang B, Zeng H, Liu J, Sun M. Effects of Prenatal Hypoxia on Nervous System Development and Related Diseases. Front Neurosci 2021; 15:755554. [PMID: 34759794 PMCID: PMC8573102 DOI: 10.3389/fnins.2021.755554] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
The fetal origins of adult disease (FOAD) hypothesis, which was proposed by David Barker in the United Kingdom in the late 1980s, posited that adult chronic diseases originated from various adverse stimuli in early fetal development. FOAD is associated with a wide range of adult chronic diseases, including cardiovascular disease, cancer, type 2 diabetes and neurological disorders such as schizophrenia, depression, anxiety, and autism. Intrauterine hypoxia/prenatal hypoxia is one of the most common complications of obstetrics and could lead to alterations in brain structure and function; therefore, it is strongly associated with neurological disorders such as cognitive impairment and anxiety. However, how fetal hypoxia results in neurological disorders remains unclear. According to the existing literature, we have summarized the causes of prenatal hypoxia, the effects of prenatal hypoxia on brain development and behavioral phenotypes, and the possible molecular mechanisms.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingliu Liu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Kaur J, Mazzone GL, Aquino JB, Nistri A. Nicotine Neurotoxicity Involves Low Wnt1 Signaling in Spinal Locomotor Networks of the Postnatal Rodent Spinal Cord. Int J Mol Sci 2021; 22:ijms22179572. [PMID: 34502498 PMCID: PMC8431663 DOI: 10.3390/ijms22179572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
The postnatal rodent spinal cord in-vitro is a useful model to investigate early pathophysiological changes after injury. While low dose nicotine (1 µM) induces neuroprotection, how higher doses affect spinal networks is unknown. Using spinal preparations of postnatal wild-type Wistar rat and Wnt1Cre2:Rosa26Tom double-transgenic mouse, we studied the effect of nicotine (0.5–10 µM) on locomotor networks in-vitro. Nicotine 10 µM induced motoneuron depolarization, suppressed monosynaptic reflexes, and decreased fictive locomotion in rat spinal cord. Delayed fall in neuronal numbers (including motoneurons) of central and ventral regions emerged without loss of dorsal neurons. Conversely, nicotine (0.5–1 µM) preserved neurons throughout the spinal cord and strongly activated the Wnt1 signaling pathway. High-dose nicotine enhanced expression of S100 and GFAP in astrocytes indicating a stress response. Excitotoxicity induced by kainate was contrasted by nicotine (10 µM) in the dorsal area and persisted in central and ventral regions with no change in basal Wnt signaling. When combining nicotine with kainate, the activation of Wnt1 was reduced compared to kainate/sham. The present results suggest that high dose nicotine was neurotoxic to central and ventral spinal neurons as the neuroprotective role of Wnt signaling became attenuated. This also corroborates the risk of cigarette smoking for the foetus/newborn since tobacco contains nicotine.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
- Correspondence: (J.K.); (G.L.M.); Tel.: +45-5260-1502 (J.K.); +54-23-0438-7425 (G.L.M.)
| | - Graciela L. Mazzone
- Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, Pilar B1629AHJ, Buenos Aires, Argentina;
- Correspondence: (J.K.); (G.L.M.); Tel.: +45-5260-1502 (J.K.); +54-23-0438-7425 (G.L.M.)
| | - Jorge B. Aquino
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, Pilar B1629AHJ, Buenos Aires, Argentina;
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
| |
Collapse
|
6
|
Maki Y, Nygard K, Hammond RR, Regnault TRH, Richardson BS. Maternal Undernourishment in Guinea Pigs Leads to Fetal Growth Restriction with Increased Hypoxic Cells and Oxidative Stress in the Brain. Dev Neurosci 2020; 41:290-299. [PMID: 32316015 DOI: 10.1159/000506939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts markers for brain hypoxia and oxidative stress. METHODS Guinea pigs were fed ad libitum (control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Near term, hypoxyprobe-1 (HP-1) was injected into pregnant sows. Fetuses were then necropsied and brain tissues were processed for HP-1 (hypoxia marker) and 4HNE, 8-OHdG, and 3-nitrotyrosine (oxidative stress markers) immunoreactivity (IR). RESULTS FGR-MNR fetal and brain weights were decreased 38 and 12%, respectively, with brain/fetal weights thereby increased 45% as a measure of brain sparing, and more so in males than females. FGR-MNR HP-1 IR was increased in most of the brain regions studied, and more so in males than females, while 4HNE and 8-OHdG IR were increased in select brain regions, but with no sex differences. CONCLUSIONS Chronic hypoxia is likely to be an important signaling mechanism in the FGR brain, but with males showing more hypoxia than females. This may involve sex differences in adaptive decreases in growth and normalizing of oxygen, with implications for sex-specific alterations in brain development and risk for later neuropsychiatric disorder.
Collapse
Affiliation(s)
- Yohei Maki
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, Ontario, Canada
| | - Robert R Hammond
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada.,Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,The Children's Health Research Institute, London, Ontario, Canada
| | - Bryan S Richardson
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada, .,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, .,The Children's Health Research Institute, London, Ontario, Canada,
| |
Collapse
|
7
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
8
|
Morrison JL, Botting KJ, Darby JRT, David AL, Dyson RM, Gatford KL, Gray C, Herrera EA, Hirst JJ, Kim B, Kind KL, Krause BJ, Matthews SG, Palliser HK, Regnault TRH, Richardson BS, Sasaki A, Thompson LP, Berry MJ. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J Physiol 2018; 596:5535-5569. [PMID: 29633280 PMCID: PMC6265540 DOI: 10.1113/jp274948] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual's risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig's potential to enhance clinical therapeutic innovation to improve human health.
Collapse
Affiliation(s)
- Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anna L. David
- Research Department of Maternal Fetal Medicine, Institute for Women's HealthUniversity College LondonLondonUK
| | - Rebecca M. Dyson
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Kathryn L. Gatford
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Clint Gray
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Emilio A. Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jonathan J. Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Bona Kim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Karen L. Kind
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Bernardo J. Krause
- Division of Paediatrics, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | | | - Hannah K. Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Timothy R. H. Regnault
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Bryan S. Richardson
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Aya Sasaki
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Loren P. Thompson
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Mary J. Berry
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
9
|
Nalivaeva NN, Turner AJ, Zhuravin IA. Role of Prenatal Hypoxia in Brain Development, Cognitive Functions, and Neurodegeneration. Front Neurosci 2018; 12:825. [PMID: 30510498 PMCID: PMC6254649 DOI: 10.3389/fnins.2018.00825] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
This review focuses on the role of prenatal hypoxia in the development of brain functions in the postnatal period and subsequent increased risk of neurodegenerative disorders in later life. Accumulating evidence suggests that prenatal hypoxia in critical periods of brain formation results in significant changes in development of cognitive functions at various stages of postnatal life which correlate with morphological changes in brain structures involved in learning and memory. Prenatal hypoxia also leads to a decrease in brain adaptive potential and plasticity due to the disturbance in the process of formation of new contacts between cells and propagation of neuronal stimuli, especially in the cortex and hippocampus. On the other hand, prenatal hypoxia has a significant impact on expression and processing of a variety of genes involved in normal brain function and their epigenetic regulation. This results in changes in the patterns of mRNA and protein expression and their post-translational modifications, including protein misfolding and clearance. Among proteins affected by prenatal hypoxia are a key enzyme of the cholinergic system-acetylcholinesterase, and the amyloid precursor protein (APP), both of which have important roles in brain function. Disruption of their expression and metabolism caused by prenatal hypoxia can also result, apart from early cognitive dysfunctions, in development of neurodegeneration in later life. Another group of enzymes affected by prenatal hypoxia are peptidases involved in catabolism of neuropeptides, including amyloid-β peptide (Aβ). The decrease in the activity of neprilysin and other amyloid-degrading enzymes observed after prenatal hypoxia could result over the years in an Aβ clearance deficit and accumulation of its toxic species which cause neuronal cell death and development of neurodegeneration. Applying various approaches to restore expression of neuronal genes disrupted by prenatal hypoxia during postnatal development opens an avenue for therapeutic compensation of cognitive dysfunctions and prevention of Aβ accumulation in the aging brain and the model of prenatal hypoxia in rodents can be used as a reliable tool for assessment of their efficacy.
Collapse
Affiliation(s)
- Natalia N. Nalivaeva
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Anthony J. Turner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Igor A. Zhuravin
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Research Centre, Saint-Petersburg State Pediatric Medical University, St. Petersburg, Russia
| |
Collapse
|
10
|
Zhang D, Cui H, Zhang L, Huang Y, Zhu J, Li X. Is maternal smoking during pregnancy associated with an increased risk of congenital heart defects among offspring? A systematic review and meta-analysis of observational studies. J Matern Fetal Neonatal Med 2017; 30:645-657. [PMID: 27126055 DOI: 10.1080/14767058.2016.1183640] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/25/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To investigate the association between maternal smoking during pregnancy and risk of congenital heart defects (CHDs) among offspring. METHODS PubMed, EMBASE, and Web of Science were searched for eligible studies. The outcomes of interest included risk of any CHD and nine subtypes. We summarized study characteristics and used a random-effects model in meta-analysis, and a two-stage dose-response model was utilized to assess the association between smoking consumption and risk. Statistical heterogeneity was assessed by a chi-squared test of the Cochrane Q statistic and I-squared value. Publication bias was assessed by funnel plots and Egger's test, and trim and fill method was utilized when publication bias existed. RESULTS Forty-three observational epidemiologic studies were included. The pooled risk ratio (RR) of any CHD was 1.11 (95% CI: 1.04, 1.18), but it exhibited substantial statistical heterogeneity (p < 0.001, I2 = 69.0%). In sensitivity analysis, we observed significant associations for atrial septal defect (ASD) and marginally significant associations for septal defects (SPD). The two-stage dose-response analysis showed evidence to support that higher levels of tobacco smoke was associated with an increased risk of septal defects, particularly for ASD and VSD (ventricular septal defect). CONCLUSION Our study presents evidence to support the cardiovascular teratogenic effect of maternal smoking during pregnancy, and their offspring may suffer from approximately a 10% relative increase in the risk of CHDs on average.
Collapse
Affiliation(s)
- Dongyu Zhang
- a Department of Epidemiology , University of North Carolina at Chapel Hill Gillings School of Global Public Health , Chapel Hill , NC , USA
| | - Hao Cui
- b Department of Health , Zhuhai Maternity and Child Health Hospital , Zhuhai , Guangdong , China
| | | | - Yanjie Huang
- d Department of Health Policy and Management , Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Jun Zhu
- e National Office for Maternal and Child Health Surveillance of China, West China Second Hospital, Sichuan University , Chengdu , Sichuan , China , and
| | - Xiaohong Li
- f National Center for Birth Defects Monitoring of China, West China Second Hospital, Sichuan University , Chengdu , Sichuan , China
| |
Collapse
|
11
|
Perinatal Positive and Negative Influences on the Early Neurobehavioral Reflex and Motor Development. PERINATAL PROGRAMMING OF NEURODEVELOPMENT 2015; 10:149-67. [DOI: 10.1007/978-1-4939-1372-5_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|