1
|
Borzage MT, Peterson BS. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth Analg 2025; 140:409-426. [PMID: 38536739 PMCID: PMC11427602 DOI: 10.1213/ane.0000000000006897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 09/28/2024]
Abstract
Although anesthesia makes painful or uncomfortable diagnostic and interventional health care procedures tolerable, it may also disrupt key cellular processes in neurons and glia, harm the developing brain, and thereby impair cognition and behavior in children. Many years of studies using in vitro, animal behavioral, retrospective database studies in humans, and several prospective clinical trials in humans have been invaluable in discerning the potential toxicity of anesthetics. The objective of this scoping review was to synthetize the evidence from preclinical studies for various mechanisms of toxicity across diverse experimental designs and relate their findings to those of recent clinical trials in real-world settings.
Collapse
Affiliation(s)
- Matthew Thomas Borzage
- From the Fetal and Neonatal Institute, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, California
| | - Bradley S. Peterson
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Institute for the Developing Mind, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, California
| |
Collapse
|
2
|
Félix L, Campos S, Guedes de Pinho P, Antunes L, Valentim AM. Early developmental effects of propofol exposure in different stages of zebrafish embryos. Toxicol Lett 2025; 403:84-93. [PMID: 39647675 DOI: 10.1016/j.toxlet.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The mechanism of action of propofol, a common intravenous anaesthetic, in early life stages is not well understood with contradictory studies showing neurotoxic and neurogenic effects in the developing brain. Zebrafish early life stages have been established as an alternative model for animal experimentation with propofol toxicological effects reported following chronic exposure. Yet, the acute exposure to other anaesthetics has been shown to induce early life stage-dependent toxicological outcomes. Therefore, the present study aimed to evaluate the teratogenic effects of propofol at the 256-cell, 50 % epiboly and 1-4 somite stages following a 20 min exposure. Embryos were exposed after primarily assessment of propofol acute toxicity (24h-LC50=9.82 μg mL-1) and absorption at different developmental stages by chromatography. Embryos (2 hours post-fertilization, hpf) were treated with an anaesthetic and toxicological concentration of propofol (2.5 and 10 μg mL-1, respectively) for 20-min. Mortality and developmental toxicity were then evaluated until 144 hpf, when the behaviour and oxidative-stress-related biomarkers were assessed. Exposure at the 256-cell stage resulted in a concentration-dependent increased number of abnormalities in head, fins and tail and a decreased body length as well as in changes in ATPase activity for the lowest concentration. On the other hand, exposure at later stages resulted in a decreased survival while no significant malformations were detected. Yet, exposure during the 50 % epiboly stage resulted in the increase of ROS levels as well as glutathione (GST and GSSG) levels while exposure at 1-4 somite stage resulted in increased DNA damage and ATPase alterations. The behaviour of zebrafish was similar among treatments. Overall, these findings show highlight the stage-dependent teratogenic potential of short propofol exposures during zebrafish early development. The alterations observed may be linked to the activation of the zygotic transcription in embryos, requiring further studies to delve into the molecular changes underlying the observed effects.
Collapse
Affiliation(s)
- Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), UTAD, 5000-801 Vila Real, Portugal.
| | - Sónia Campos
- CECAV-Veterinary and Animal Research Centre, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisboa, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luís Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana M Valentim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Laboratory Animal Science, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Drury KM, Hall TA, Orwoll B, Adhikary S, Kirby A, Williams CN. Exposure to Sedation and Analgesia Medications: Short-term Cognitive Outcomes in Pediatric Critical Care Survivors With Acquired Brain Injury. J Intensive Care Med 2024; 39:374-386. [PMID: 37885235 PMCID: PMC11132562 DOI: 10.1177/08850666231210261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background/Objective: Pediatric intensive care unit (PICU) survivors risk significant cognitive morbidity, particularly those with acquired brain injury (ABI) diagnoses. Studies show sedative and analgesic medication may potentiate neurologic injury, but few studies evaluate impact on survivor outcomes. This study aimed to evaluate whether exposures to analgesic and sedative medications are associated with worse neurocognitive outcome. Methods: A retrospective cohort study was conducted of 91 patients aged 8 to 18 years, undergoing clinical neurocognitive evaluation approximately 1 to 3 months after PICU discharge. Electronic health data was queried for sedative and analgesic medication exposures, including opioids, benzodiazepines, propofol, ketamine, and dexmedetomidine. Doses were converted to class equivalents, evaluated by any exposure and cumulative dose exposure per patient weight. Cognitive outcome was derived from 8 objective cognitive assessments with an emphasis on executive function skills using Principal Components Analysis. Then, linear regression was used to control for baseline cognitive function estimates to calculate a standardized residualized neurocognitive index (rNCI) z-score. Multivariable linear regression evaluated the association between rNCI and medication exposure controlling for covariates. Significance was defined as P < .05. Results: Most (n = 80; 88%) patients received 1 or more study medications. Any exposure and higher cumulative doses of benzodiazepine and ketamine were significantly associated with worse rNCI in bivariate analyses. When controlling for Medicaid, preadmission comorbid conditions, length of stay, delirium, and receipt of other medication classes, receipt of benzodiazepine was associated with significantly worse rNCI (β-coefficient = -0.48, 95% confidence interval = -0.88, -0.08). Conclusions: Exposure to benzodiazepines was independently associated with worse acute phase cognitive outcome using objective assessments focused on executive function skills when controlling for demographic and illness characteristics. Clinician decisions regarding medication regimens in the PICU may serve as a modifiable factor to improve outcomes. Additional inquiry into associations with long-term cognitive outcome and optimal medication regimens is needed.
Collapse
Affiliation(s)
- Kurt M. Drury
- Department of Pediatrics, Division of Critical Care, Oregon Health & Science University
- Pediatric Critical Care and Neurotrauma Recovery Program, Oregon Health & Science University
| | - Trevor A. Hall
- Pediatric Critical Care and Neurotrauma Recovery Program, Oregon Health & Science University
- Department of Pediatrics, Division of Pediatric Psychology, Oregon Health & Science University
| | - Benjamin Orwoll
- Department of Pediatrics, Division of Critical Care, Oregon Health & Science University
| | - Sweta Adhikary
- Pediatric Critical Care and Neurotrauma Recovery Program, Oregon Health & Science University
- School of Medicine, Oregon Health and Science University
| | - Aileen Kirby
- Department of Pediatrics, Division of Critical Care, Oregon Health & Science University
| | - Cydni N. Williams
- Department of Pediatrics, Division of Critical Care, Oregon Health & Science University
- Pediatric Critical Care and Neurotrauma Recovery Program, Oregon Health & Science University
| |
Collapse
|
4
|
Zhang W, Liu Q, Wang J, Liu L. Anaesthesia and brain development: a review of propofol-induced neurotoxicity in pediatric populations. J Dev Orig Health Dis 2024; 15:e2. [PMID: 38450456 DOI: 10.1017/s2040174424000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
With the advancement of medical technology, there are increasing opportunities for new-borns, infants, and pregnant women to be exposed to general anaesthesia. Propofol is commonly used for the induction of anaesthesia, maintenance of general intravenous anaesthesia and sedation of intensive-care children. Many previous studies have found that propofol has organ-protective effects, but growing evidence suggests that propofol interferes with brain development, affecting learning and cognitive function. The purpose of this review is to summarize the latest progress in understanding the neurotoxicity of propofol. Evidence from case studies and clinical studies suggests that propofol has neurotoxicity on the developing brain. We classify the findings on propofol-induced neurotoxicity based on its damage mechanism. We end by summarizing the current protective strategies against propofol neurotoxicity. Fully understanding the neurotoxic mechanisms of propofol can help us use it at a reasonable dosage, reduce its side effects, and increase patient safety.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Qi Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Junli Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Zhang B, Zhang P, L T, Cao Y, Chen T, Chen C, Zhang Z, Zhong Q. P2X7 Receptor in microglia contributes to propofol-induced unconsciousness by regulating synaptic plasticity in mice. Neuroscience 2023:S0306-4522(23)00223-3. [PMID: 37211083 DOI: 10.1016/j.neuroscience.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/16/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Propofol infusion is processed through the wake-sleep cycle in neural connections, and the ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and synaptic plasticity through its regulation of electric activity in the brain. Here, we explored the potential roles of P2X7R of microglia in propofol-induced unconsciousness. Propofol induced loss of the righting reflex in male C57BL/6 wild-type mice and increased spectral power of the slow wave and delta wave of the medial prefrontal cortex (mPFC), all of which were reversed with P2X7R antagonist A-740003 and strengthened with P2X7R agonist Bz-ATP. Propofol increased the P2X7R expression level and P2X7R immunoreactivity with microglia in the mPFC, induced mild synaptic injury and increased GABA release in the mPFC, and these changes were less severe when treated with A-740003 and were more obvious when treated with Bz-ATP. Electrophysiological approaches showed that propofol induced a decreased frequency of sEPSCs and an increased frequency of sIPSCs, A-740003 decrease frequency of sEPSCs and sIPSCs and Bz-ATP increase frequency of sEPSCs and sIPSCs under propofol anesthesia. These findings indicated that P2X7R in microglia regulates synaptic plasticity and may contribute to propofol-mediated unconsciousness.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430022
| | - Panpan Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071; Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430022
| | - Tingting L
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Yue Cao
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071.
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan, Hubei, China, 430071.
| |
Collapse
|
6
|
Feng J, Zhang X, Jiang M, Dai X, Li G, Liu Z. Effect of sevoflurane anesthesia to neonatal rat hippocampus by RNA-seq. Neurosci Lett 2023; 801:137141. [PMID: 36813076 DOI: 10.1016/j.neulet.2023.137141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Sevoflurane is an inhalational anesthetic for the induction and maintenance of general anesthesia in pediatric surgery. However, few studies have paid attention to the multiple organ toxicity and the mechanism behind it. METHODS Inhalation anesthesia neonatal rat model were realized by exposing to 3.5% sevoflurane. RNA-seq was performed to find out how inhalation anesthesia affects the lung, cerebral cortex, hippocampus, and heart. Validation of RNA-seq results by QPCR after animal model establishment. Tunel assay detects cell apoptosis in each group. CCK-8, cell apoptosis assay and western blot assay validation of the role of siRNA-Bckdhb in the action of sevoflurane on rat hippocampal neuronal cells. RESULTS There are significant differences between different groups, especially the hippocampus and cerebral cortex. Bckdhb was significantly up-regulated in the hippocampus with sevoflurane-treated. Pathway analysis revealed several abundant pathways related to DEGs, e.g., protein digestion and absorption and PI3K-Akt signaling pathway. A series of cellular and animal experiments showed that siRNA-Bckdhb can inhibit the reduction of cellular activity caused by sevoflurane. CONCLUSION Bckdhb interference experiments indicated that sevoflurane induces hippocampal neuronal cells apoptosis by regulating Bckdhb expression. Our study provided new insights into the molecular mechanism of sevoflurane-induced brain damage in pediatrics.
Collapse
Affiliation(s)
- Jinhua Feng
- Department of Pharmacy, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xuesong Zhang
- Department of Anesthesiology, Zhongshan Wusong Hospital, Fudan University, Shanghai, China
| | - Menglu Jiang
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xu Dai
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Guowei Li
- Department of Anesthesiology, Wuxi Fifth People's Hospital Affiliated to Jiangnan University, Wuxi, China.
| | - Zhenqing Liu
- Department of Anesthesiology, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China.
| |
Collapse
|
7
|
Zhang J, Li Y. Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chem Neurosci 2023; 14:1017-1032. [PMID: 36854650 DOI: 10.1021/acschemneuro.2c00755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Propofol is the most commonly used intravenous general anesthetic in clinical anesthesia, and it is also widely used in general anesthesia for pregnant women and infants. Some clinical and preclinical studies have found that propofol causes damage to the immature nervous system, which may lead to neurodevelopmental disorders and cognitive dysfunction in infants and children. However, its potential molecular mechanism has not been fully elucidated. Recent in vivo and in vitro studies have found that some exogenous drugs and interventions can effectively alleviate propofol-induced neurotoxicity. In this review, we focus on the relevant preclinical studies and summarize the latest findings on the potential mechanisms and therapeutic strategies of propofol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
8
|
Li H, Zhou B, Liao P, Liao D, Yang L, Wang J, Liu J, Jiang R, Chen L. Prolonged exposure of neonatal mice to sevoflurane leads to hyper-ramification in microglia, reduced contacts between microglia and synapses, and defects in adult behavior. Front Neurol 2023; 14:1142739. [PMID: 37025197 PMCID: PMC10072331 DOI: 10.3389/fneur.2023.1142739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/24/2023] [Indexed: 04/08/2023] Open
Abstract
Background Prolonged exposure to general anesthetics during development is known to cause neurobehavioral abnormalities, but the cellular and molecular mechanisms involved are unclear. Microglia are the resident immune cells in the central nervous system and play essential roles in normal brain development. Materials and methods In the study, postnatal day 7 (P7) C57BL/6 mice were randomly assigned to two groups. In the sevoflurane (SEVO), mice were exposed to 2.5% sevoflurane for 4 h. In the control group, mice were exposed to carrier gas (30% O2/70% N2) for 4 h. Fixed brain slices from P14 to P21 mice were immunolabeled for ionized calcium-binding adapter molecule 1 (IBA-1) to visualize microglia. The morphological analysis of microglia in the somatosensory cortex was performed using ImageJ and Imaris software. Serial block face scanning electron microscopy (SBF-SEM) was performed to assess the ultrastructure of the microglia and the contacts between microglia and synapse in P14 and P21 mice. The confocal imaging of brain slices was performed to assess microglia surveillance in resting and activated states in P14 and P21 mice. Behavioral tests were used to assess the effect of microglia depletion and repopulation on neurobehavioral abnormalities caused by sevoflurane exposure. Results The prolonged exposure of neonatal mice to sevoflurane induced microglia hyper-ramification with an increase in total branch length, arborization area, and branch complexity 14 days after exposure. Prolonged neonatal sevoflurane exposure reduced contacts between microglia and synapses, without affecting the surveillance of microglia in the resting state or responding to laser-induced focal brain injury. These neonatal changes in microglia were associated with anxiety-like behaviors in adult mice. Furthermore, microglial depletion before sevoflurane exposure and subsequent repopulation in the neonatal brain mitigated anxiety-like behaviors caused by sevoflurane exposure. Conclusion Our experiments indicate that general anesthetics may harm the developing brain, and microglia may be an essential target of general anesthetic-related developmental neurotoxicity.
Collapse
Affiliation(s)
- Hong Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Daqing Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Wang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ruotian Jiang,
| | - Lingmin Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Lingmin Chen,
| |
Collapse
|
9
|
Wang J, Liu Z. Research progress on molecular mechanisms of general anesthetic-induced neurotoxicity and cognitive impairment in the developing brain. Front Neurol 2022; 13:1065976. [PMID: 36504660 PMCID: PMC9729288 DOI: 10.3389/fneur.2022.1065976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
General anesthetics-induced neurotoxicity and cognitive impairment in developing brains have become one of the current research hotspots in the medical science community. The underlying mechanisms are complex and involve various related molecular signaling pathways, cell mediators, autophagy, and other pathological processes. However, few drugs can be directly used to treat neurotoxicity and cognitive impairment caused by general anesthetics in clinical practice. This article reviews the molecular mechanism of general anesthesia-induced neurotoxicity and cognitive impairment in the neonatal brain after surgery in the hope of providing critical references for the treatments of clinical diseases.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,Baotou Clinical Medical College, Inner Mongolia Medical University, Baotou, China
| | - Zhihui Liu
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,*Correspondence: Zhihui Liu
| |
Collapse
|
10
|
Potrebić MS, Pavković ŽZ, Srbovan MM, Ðmura GM, Pešić VT. Changes in the Behavior and Body Weight of Mature, Adult Male Wistar Han Rats after Reduced Social Grouping and Social Isolation. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:615-623. [PMID: 36328417 PMCID: PMC9732776 DOI: 10.30802/aalas-jaalas-22-000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Changes in housing density, including individual housing, are commonly necessary in animal research. Obtaining reproducibility and translational validity in biomedical research requires an understanding of how animals adapt to changes in housing density. Existing literature mainly addresses acclimatization after transportation. We used a within-subject design to examine changes in behavior and weight gain of 4-mo-old male Wistar Han rats after reduction of their social group (RSG; due to removal of one rat from a cage containing 3 rats) and social isolation (SI; the removed rat) for the subsequent 2 wk. Changes in weight gain and in exploratory and center-avoidance behavior in an inescapable open arena (OA) were measured before (D0) and on days 7 and 14 (D7 and D14, respectively) after social change. The motor response to d-amphetamine (1.5 mg/kg), which stimulates behavioral arousal in response to novelty, was assessed at D14. Within-subject design revealed that RSG rats in OA had less locomotion at D7 but not more center-avoidance behavior and had returned to the D0 activity level at D14; SI rats in OA had consistently less locomotion and more center-avoidance behavior. Rearing behavior during OA exposure did not change in either group. However, SI rats showed more center-avoidance behavior in OA, greater weight gain, and less amphetamine-induced rearing at D14 as compared with RSG rats. These data indicate that after RSG, mature adult male rats require 2 wk to return to their baseline level of OA-related behavior, while after SI they gain weight and acquire maladaptive exploratory and center-avoidance behavior. The finding that SI produces maladaptive behavioral and physiologic alterations in adult male rats deserves attention because these changes could have confounding effects on research findings.
Collapse
Affiliation(s)
- Milica S Potrebić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Željko Z Pavković
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja M Srbovan
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran M Ðmura
- Animal Facility, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna T Pešić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia,,Corresponding author.
| |
Collapse
|
11
|
Maksimovic S, Useinovic N, Quillinan N, Covey DF, Todorovic SM, Jevtovic-Todorovic V. General Anesthesia and the Young Brain: The Importance of Novel Strategies with Alternate Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031889. [PMID: 35163810 PMCID: PMC8836828 DOI: 10.3390/ijms23031889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past three decades, we have been grappling with rapidly accumulating evidence that general anesthetics (GAs) may not be as innocuous for the young brain as we previously believed. The growing realization comes from hundreds of animal studies in numerous species, from nematodes to higher mammals. These studies argue that early exposure to commonly used GAs causes widespread apoptotic neurodegeneration in brain regions critical to cognition and socio-emotional development, kills a substantial number of neurons in the young brain, and, importantly, results in lasting disturbances in neuronal synaptic communication within the remaining neuronal networks. Notably, these outcomes are often associated with long-term impairments in multiple cognitive-affective domains. Not only do preclinical studies clearly demonstrate GA-induced neurotoxicity when the exposures occur in early life, but there is a growing body of clinical literature reporting similar cognitive-affective abnormalities in young children who require GAs. The need to consider alternative GAs led us to focus on synthetic neuroactive steroid analogues that have emerged as effective hypnotics, and analgesics that are apparently devoid of neurotoxic effects and long-term cognitive impairments. This would suggest that certain steroid analogues with different cellular targets and mechanisms of action may be safe alternatives to currently used GAs. Herein we summarize our current knowledge of neuroactive steroids as promising novel GAs.
Collapse
Affiliation(s)
- Stefan Maksimovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Correspondence:
| | - Nemanja Useinovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Nidia Quillinan
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Neuronal Injury and Plasticity Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Slobodan M. Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (N.U.); (N.Q.); (S.M.T.); (V.J.-T.)
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Turner AD, Sullivan T, Drury K, Hall TA, Williams CN, Guilliams KP, Murphy S, Iqbal O’Meara AM. Cognitive Dysfunction After Analgesia and Sedation: Out of the Operating Room and Into the Pediatric Intensive Care Unit. Front Behav Neurosci 2021; 15:713668. [PMID: 34483858 PMCID: PMC8415404 DOI: 10.3389/fnbeh.2021.713668] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
In the midst of concerns for potential neurodevelopmental effects after surgical anesthesia, there is a growing awareness that children who require sedation during critical illness are susceptible to neurologic dysfunctions collectively termed pediatric post-intensive care syndrome, or PICS-p. In contrast to healthy children undergoing elective surgery, critically ill children are subject to inordinate neurologic stress or injury and need to be considered separately. Despite recognition of PICS-p, inconsistency in techniques and timing of post-discharge assessments continues to be a significant barrier to understanding the specific role of sedation in later cognitive dysfunction. Nonetheless, available pediatric studies that account for analgesia and sedation consistently identify sedative and opioid analgesic exposures as risk factors for both in-hospital delirium and post-discharge neurologic sequelae. Clinical observations are supported by animal models showing neuroinflammation, increased neuronal death, dysmyelination, and altered synaptic plasticity and neurotransmission. Additionally, intensive care sedation also contributes to sleep disruption, an important and overlooked variable during acute illness and post-discharge recovery. Because analgesia and sedation are potentially modifiable, understanding the underlying mechanisms could transform sedation strategies to improve outcomes. To move the needle on this, prospective clinical studies would benefit from cohesion with regard to datasets and core outcome assessments, including sleep quality. Analyses should also account for the wide range of diagnoses, heterogeneity of this population, and the dynamic nature of neurodevelopment in age cohorts. Much of the related preclinical evidence has been studied in comparatively brief anesthetic exposures in healthy animals during infancy and is not generalizable to critically ill children. Thus, complementary animal models that more accurately "reverse translate" critical illness paradigms and the effect of analgesia and sedation on neuropathology and functional outcomes are needed. This review explores the interactive role of sedatives and the neurologic vulnerability of critically ill children as it pertains to survivorship and functional outcomes, which is the next frontier in pediatric intensive care.
Collapse
Affiliation(s)
- Ashley D. Turner
- Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - Travis Sullivan
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Kurt Drury
- Department of Pediatrics, Division of Pediatric Critical Care, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR, United States
| | - Trevor A. Hall
- Department of Pediatrics, Division of Pediatric Psychology, Pediatric Critical Care and Neurotrauma Recovery Program, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR, United States
| | - Cydni N. Williams
- Department of Pediatrics, Division of Pediatric Critical Care, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR, United States
| | - Kristin P. Guilliams
- Division of Pediatric Critical Care, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Sarah Murphy
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - A. M. Iqbal O’Meara
- Department of Pediatrics, Child Health Research Institute, Children’s Hospital of Richmond at Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
13
|
A synthetic peptide rescues rat cortical neurons from anesthetic-induced cell death, perturbation of growth and synaptic assembly. Sci Rep 2021; 11:4567. [PMID: 33633281 PMCID: PMC7907385 DOI: 10.1038/s41598-021-84168-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Anesthetics are deemed necessary for all major surgical procedures. However, they have also been found to exert neurotoxic effects when tested on various experimental models, but the underlying mechanisms remain unknown. Earlier studies have implicated mitochondrial fragmentation as a potential target of anesthetic-induced toxicity, although clinical strategies to protect their structure and function remain sparse. Here, we sought to determine if preserving mitochondrial networks with a non-toxic, short-life synthetic peptide—P110, would protect cortical neurons against both inhalational and intravenous anesthetic-induced neurotoxicity. This study provides the first direct and comparative account of three key anesthetics (desflurane, propofol, and ketamine) when used under identical conditions, and demonstrates their impact on neonatal, rat cortical neuronal viability, neurite outgrowth and synaptic assembly. Furthermore, we discovered that inhibiting Fis1-mediated mitochondrial fission reverses anesthetic-induced aberrations in an agent-specific manner. This study underscores the importance of designing mitigation strategies invoking mitochondria-mediated protection from anesthetic-induced toxicity in both animals and humans.
Collapse
|
14
|
Xie L, Hu Y, Yan D, McQuillan P, Liu Y, Zhu S, Zhu Z, Jiang Y, Hu Z. The relationship between exposure to general anesthetic agents and the risk of developing an impulse control disorder. Pharmacol Res 2021; 165:105440. [PMID: 33493656 DOI: 10.1016/j.phrs.2021.105440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Most studies examining the effect of extended exposure to general anesthetic agents (GAAs) have demonstrated that extended exposure induces both structural and functional changes in the central nervous system. These changes are frequently accompanied by neurobehavioral changes that include impulse control disorders that are generally characterized by deficits in behavioral inhibition and executive function. In this review, we will.
Collapse
Affiliation(s)
- Linghua Xie
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhan Hu
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - P McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA, USA
| | - Yue Liu
- Department of Anesthesiology, The Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirui Zhu
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yilei Jiang
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Wang WJ, Zhong YB, Zhao JJ, Ren M, Zhang SC, Xu MS, Xu ST, Zhang YJ, Shan CL. Transcranial pulse current stimulation improves the locomotor function in a rat model of stroke. Neural Regen Res 2021; 16:1229-1234. [PMID: 33318399 PMCID: PMC8284281 DOI: 10.4103/1673-5374.301018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previous studies have shown that transcranial pulse current stimulation (tPCS) can increase cerebral neural plasticity and improve patients’ locomotor function. However, the precise mechanisms underlying this effect remain unclear. In the present study, rat models of stroke established by occlusion of the right cerebral middle artery were subjected to tPCS, 20 minutes per day for 7 successive days. tPCS significantly reduced the Bederson score, increased the foot print area of the affected limbs, and reduced the standing time of affected limbs of rats with stroke compared with that before intervention. Immunofluorescence staining and western blot assay revealed that tPCS significantly increased the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra. This finding suggests that tPCS can improve the locomotor function of rats with stroke by regulating the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra. These findings may provide a new method for the clinical treatment of poststroke motor dysfunction and a theoretical basis for clinical application of tPCS. The study was approved by the Animal Use and Management Committee of Shanghai University of Traditional Chinese Medicine of China (approval No. PZSHUTCM190315003) on February 22, 2019.
Collapse
Affiliation(s)
- Wen-Jing Wang
- Center of Rehabilitation, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Biao Zhong
- Center of Rehabilitation, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Jun Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Meng Ren
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Cong Zhang
- Center of Rehabilitation, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming-Shu Xu
- Laboratory of Neurobiology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Shu-Tian Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying-Jie Zhang
- Laboratory of Neurobiology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Chun-Lei Shan
- Center of Rehabilitation, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Potential Neurodevelopmental Effects of Pediatric Intensive Care Sedation and Analgesia: Repetitive Benzodiazepine and Opioid Exposure Alters Expression of Glial and Synaptic Proteins in Juvenile Rats. Crit Care Explor 2020; 2:e0105. [PMID: 32426747 PMCID: PMC7188419 DOI: 10.1097/cce.0000000000000105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sedatives are suspected contributors to neurologic dysfunction in PICU patients, to whom they are administered during sensitive neurodevelopment. Relevant preclinical modeling has largely used comparatively brief anesthesia in infant age-approximate animals, with insufficient study of repetitive combined drug administration during childhood. We hypothesized that childhood neurodevelopment is selectively vulnerable to repeated treatment with benzodiazepine and opioid. We report a preclinical model of combined midazolam and morphine in early childhood age-approximate rats.
Collapse
|
17
|
Sinha S, Patro N, Patro IK. Amelioration of neurobehavioral and cognitive abilities of F1 progeny following dietary supplementation with Spirulina to protein malnourished mothers. Brain Behav Immun 2020; 85:69-87. [PMID: 31425827 DOI: 10.1016/j.bbi.2019.08.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023] Open
Abstract
Early life adversities (stress, infection and mal/undernutrition) can affect neurocognitive, hippocampal and immunological functioning of the brain throughout life. Substantial evidence suggests that maternal protein malnutrition contributes to the progression of neurocognitive abnormalities and psychopathologies in adolescence and adulthood in offspring. Maternal malnutrition is prevalent in low and middle resource populations. The present study was therefore undertaken to evaluate the effects of dietary Spirulina supplementation of protein malnourished mothers during pregnancy and lactation on their offspring's reflex, neurobehavioral and cognitive development. Spirulina is a Cyanobacterium and a major source of protein and is being used extensively as a dynamic nutraceutical against aging and neurodegeneration. Sprague Dawley rats were switched to low protein (8% protein) or normal protein (20% protein) diet for 15 days before conception. Spirulina was orally administered (400 mg/kg/b.wt.) to subgroups of pregnant females from the day of conception throughout the lactational period. We examined several parameters including reproductive performance of dams, physical development, postnatal reflex ontogeny, locomotor behavior, neuromuscular strength, anxiety, anhedonic behavior, cognitive abilities and microglia populations in the F1 progeny. The study showed improved reproductive performance of Spirulina supplemented protein malnourished dams, accelerated acquisition of neurological reflexes, better physical appearance, enhanced neuromuscular strength, improved spatial learning and memory and partly normalized PMN induced hyperactivity, anxiolytic and anhedonic behavior in offspring. These beneficial effects of Spirulina consumption were also accompanied by reduced microglial activation which might assist in restoring the behavioral and cognitive skills in protein malnourished F1 rats. Maternal Spirulina supplementation is therefore proposed as an economical nutraceutical/supplement to combat malnutrition associated behavioral and cognitive deficits.
Collapse
Affiliation(s)
- Shrstha Sinha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
18
|
Tang X, Zhang X, Li S, Chi X, Luo A, Zhao Y. NR2B receptor- and calpain-mediated KCC2 cleavage resulted in cognitive deficiency exposure to isoflurane. Neurotoxicology 2020; 76:75-83. [PMID: 31672664 DOI: 10.1016/j.neuro.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND During brain development, volatile anesthetic can rapidly interfere with physiologic patterns of dendritic development and synaptogenesis and impair the formation of precise neuronal circuits. KCC2 plays vital roles in spine development and synaptogenesis through its Cl- transport function and structural interactions with the spine cytoskeleton protein 4.1 N. The aim of this study was to dissect the mechanism of volatile anesthetics, which impair dendritic development and synaptogenesis via mediation of KCC2 cleavage. METHODS Westernblotting was employed to assess the expression change of NR2B, NR2A, calpain-1, calpain-2, KCC2, and 4.1 N protein of rat (PND 5). Co-immunoprecipitation was applied to demonstrate the interaction between KCC2 and 4.1 N protein. Long-term cognitive deficiency was assessed by MWM. Lentivirus-calpain-2 was administered by hippocampus stereotaxic injection. RESULTS There was a significant increase in the level of NR2B instead of NR2A exposure to isoflurane. Calpain-2 was excessively activated via NR2B after 6 h of isoflurane exposure. The expression of plasmalemmal KCC2 and 4.1 N protein was significantly decreased treated with isoflurane. The isoflurane group showed longer traveled distance, prolonged escape latency, less time spent in the target quadrant, and decreased platform crossings. Pretreatment with ifenprodil and downregulated calpain-2 expression significantly alleviated these neurotoxicity responses and cognitive deficiency after isoflurane exposure. CONCLUSIONS A significant increase in NR2B, excessive activation of calpain-2 and increased cleavage of plasmalemmal KCC2, are involved in isoflurane-induced neurotoxicity and long-term cognitive deficiency. Blocking NR2B and calpain-2 activity significantly attenuated these responses. The KCC2 cleavage mediated by NR2B and calpain-2 is a major determinant of isoflurane-induced long-term cognitive deficiency.
Collapse
Affiliation(s)
- Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Xue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Xiaohui Chi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
19
|
Kalisvaart ACJ, Prokop BJ, Colbourne F. Hypothermia: Impact on plasticity following brain injury. Brain Circ 2019; 5:169-178. [PMID: 31950092 PMCID: PMC6950515 DOI: 10.4103/bc.bc_21_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic hypothermia (TH) is a potent neuroprotectant against multiple forms of brain injury, but in some cases, prolonged cooling is needed. Such cooling protocols raise the risk that TH will directly or indirectly impact neuroplasticity, such as after global and focal cerebral ischemia or traumatic brain injury. TH, depending on the depth and duration, has the potential to broadly affect brain plasticity, especially given the spatial, temporal, and mechanistic overlap with the injury processes that cooling is used to treat. Here, we review the current experimental and clinical evidence to evaluate whether application of TH has any adverse or positive effects on postinjury plasticity. The limited available data suggest that mild TH does not appear to have any deleterious effect on neuroplasticity; however, we emphasize the need for additional high-quality preclinical and clinical work in this area.
Collapse
|
20
|
Li J, Guo M, Liu Y, Wu G, Miao L, Zhang J, Zuo Z, Li Y. Both GSK-3β/CRMP2 and CDK5/CRMP2 pathways participate in the protection of dexmedetomidine against propofol-induced learning and memory impairment in neonatal rats. Toxicol Sci 2019; 171:193-210. [PMID: 31187143 DOI: 10.1093/toxsci/kfz135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
Dexmedetomidine has been reported to ameliorate propofol-induced neurotoxicity in neonatal animals. However, the underlying mechanism is still undetermined. Glycogen synthase kinase-3β (GSK-3β), cycline dependent kinase-5 (CDK5) and Rho-kinase (RhoA) pathways play critical roles in neuronal development. The present study is to investigate whether GSK-3β, CDK5 and RhoA pathways are involved in the neuroprotection of dexmedetomidine. Seven-day-old (P7) Sprague-Dawley rats were anesthetized with propofol for 6 h. Dexmedetomidine at various concentrations were administered before propofol exposure. Neuroapoptosis, the neuronal proliferation and the level of neurotransmitter in the hippocampus were evaluated. The effects of GSK-3β inhibitor SB415286, CDK5 inhibitor roscovitine or RhoA inhibitor Y276321 on propofol-induced neurotoxicity were assessed. Propofol induced apoptosis in the hippocampal neurons and astrocytes, inhibited neuronal proliferation in the DG region, down-regulated the level of γ-aminobutyric acid (GABA) and glutamate in the hippocampus, and impaired long-term cognitive function. These harmful effects were reduced by pretreatment with 50 μg·kg-1 dexmedetomidine. Moreover, propofol activated GSK-3β and CDK5 pathways, but not RhoA pathway, by reducing the phosphorylation of GSK-3β (ser 9), increasing the expression of CDK5 activator P25 and increasing the phosphorylation of their target sites on CRMP2 shortly after exposure. These effects were reversed by pretreatment with 50 μg·kg-1 dexmedetomidine. Furthermore, SB415286 and roscovitine, not Y276321, attenuated the propofol-induced neuroapoptosis, brain cell proliferation inhibition, GABA and glutamate downregulation, and learning and memory dysfunction. Our results indicate that dexmedetomidine reduces propofol-induced neurotoxicity and neurocognitive impairment via inhibiting activation of GSK-3β/CRMP2 and CDK5/CRMP2 pathways in the hippocampus of neonatal rats.
Collapse
Affiliation(s)
- Junhua Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minyan Guo
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yafang Liu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guiyun Wu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Miao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia, 22908-0710, USA
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of RNA and Major Diseases of Brain and Hearts, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Holtkamp C, Koos B, Unterberg M, Rahmel T, Bergmann L, Bazzi Z, Bazzi M, Bukhari H, Adamzik M, Rump K. A novel understanding of postoperative complications: In vitro study of the impact of propofol on epigenetic modifications in cholinergic genes. PLoS One 2019; 14:e0217269. [PMID: 31141559 PMCID: PMC6541299 DOI: 10.1371/journal.pone.0217269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background Propofol is a widely used anaesthetic drug with advantageous operating conditions and recovery profile. However, propofol could have long term effects on neuronal cells and is associated with post-operative delirium (POD). In this context, one of the contributing factors to the pathogenesis of POD is a reduction of cholinesterase activity. Accordingly, we investigated the effects of propofol on the methylation, expression and activity of cholinergic genes and proteins in an in-vitro model. Results We found that propofol indeed reduced the activity of AChE / BChE in our in-vitro model, without affecting the protein levels. Furthermore, we could show that propofol reduced the methylation of a repressor region of the CHRNA7 gene without changing the secretion of pro–or anti-inflammatory cytokines. Lastly, propofol changed the expression patterns of genes responsible for maintaining the epigenetic status of the cell and accordingly reduced the tri-methylation of H3 K27. Conclusion In conclusion we found a possible functional link between propofol treatment and POD, due to a reduced cholinergic activity. In addition to this, propofol changed the expression of different maintenance genes of the epigenome that also affected histone methylation. Thus, propofol treatment may also induce strong, long lasting changes in the brain by potentially altering the epigenetic landscape.
Collapse
Affiliation(s)
- Caroline Holtkamp
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, Bochum, Germany
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, Bochum, Germany
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, Bochum, Germany
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, Bochum, Germany
| | - Zainab Bazzi
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, Bochum, Germany
| | - Maha Bazzi
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, Bochum, Germany
| | - Hassan Bukhari
- Medizinisches Proteomcenter (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, Bochum, Germany
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
22
|
Akman O, Raol YH, Auvin S, Cortez MA, Kubova H, de Curtis M, Ikeda A, Dudek FE, Galanopoulou AS. Methodologic recommendations and possible interpretations of video-EEG recordings in immature rodents used as experimental controls: A TASK1-WG2 report of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018; 3:437-459. [PMID: 30525114 PMCID: PMC6276777 DOI: 10.1002/epi4.12262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 01/30/2023] Open
Abstract
The use of immature rodents to study physiologic aspects of cortical development requires high-quality recordings electroencephalography (EEG) with simultaneous video recording (vEEG) of behavior. Normative developmental vEEG data in control animals are fundamental for the study of abnormal background activity in animal models of seizures or other neurologic disorders. Electrical recordings from immature, freely behaving rodents can be particularly difficult because of the small size of immature rodents, their thin and soft skull, interference with the recording apparatus by the dam, and other technical challenges. In this report of the TASK1 Working Group 2 (WG2) of the International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force, we provide suggestions that aim to optimize future vEEG recordings from immature rodents, as well as their interpretation. We focus on recordings from immature rodents younger than 30 days old used as experimental controls, because the quality and correct interpretation of such recordings is important when interpreting the vEEG results of animals serving as models of neurologic disorders. We discuss the technical aspects of such recordings and compare tethered versus wireless approaches. We also summarize the appearance of common artifacts and various patterns of electrical activity seen in young rodents used as controls as a function of behavioral state, age, and (where known) sex and strain. The information herein will hopefully help improve the methodology of vEEG recordings from immature rodents and may lead to results and interpretations that are more consistent across studies from different laboratories.
Collapse
Affiliation(s)
- Ozlem Akman
- Department of PhysiologyFaculty of MedicineIstanbul Bilim UniversityIstanbulTurkey
| | - Yogendra H. Raol
- Division of NeurologyDepartment of PediatricsSchool of MedicineTranslational Epilepsy Research ProgramUniversity of ColoradoAuroraColoradoU.S.A
| | - Stéphane Auvin
- PROTECT, INSERM UMR1141APHPUniversity Paris DiderotSorbonne Paris CitéParisFrance
- University Hospital Robert‐DebréService of Pediatric NeurologyParisFrance
| | - Miguel A. Cortez
- Department of PediatricsUniversity of TorontoTorontoOntarioCanada
- Program of Neurosciences and Mental HealthPeter Gilgan Center for Research and LearningSickKids Research InstituteTorontoOntarioCanada
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Hana Kubova
- Department of Developmental EpileptologyInstitute of the Czech Academy of SciencesCzech Academy of SciencesPragueCzech Republic
| | - Marco de Curtis
- Epilepsy UnitCarlo Besta Neurological Institute FoundationMilanItaly
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and PhysiologyKyoto University Graduate School of MedicineKyotoJapan
| | - F. Edward Dudek
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUtahU.S.A
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyDominick P. Purpura Department of NeuroscienceIsabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineEinstein/Montefiore Epilepsy CenterMontefiore Medical CenterBronxNew YorkU.S.A
| |
Collapse
|
23
|
Xin D, Chu X, Bai X, Ma W, Yuan H, Qiu J, Liu C, Li T, Zhou X, Chen W, Liu D, Wang Z. l-Cysteine suppresses hypoxia-ischemia injury in neonatal mice by reducing glial activation, promoting autophagic flux and mediating synaptic modification via H 2S formation. Brain Behav Immun 2018; 73:222-234. [PMID: 29751053 DOI: 10.1016/j.bbi.2018.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 10/17/2022] Open
Abstract
We previously reported that l-Cysteine, an H2S donor, significantly alleviated brain injury after hypoxia-ischemic (HI) injury in neonatal mice. However, the mechanisms underlying this neuroprotective effect of l-Cysteine against HI insult remain unknown. In the present study, we tested the hypothesis that the protective effects of l-Cysteine are associated with glial responses and autophagy, and l-Cysteine attenuates synaptic injury as well as behavioral deficits resulting from HI. Consistent with our previous findings, we found that treatment with l-Cysteine after HI reduced early brain injury, improved behavioral deficits and synaptic damage, effects which were associated with an up-regulation of synaptophysin and postsynaptic density protein 95 expression in the lesioned cortex. l-Cysteine attenuated the accumulation of CD11b+/CD45high cells, activation of microglia and astrocytes and diminished HI-induced increases in reactive oxygen species and malondialdehyde within the lesioned cortex. In addition, l-Cysteine increased microtubule associated protein 1 light chain 3-II and Beclin1 expression, decreased p62 expression and phosphor-mammalian target of rapamycin and phosphor-signal transducer and activator of transcription 3. Further support for a critical role of l-Cysteine was revealed from results demonstrating that treatment with an inhibitor of the H2S-producing enzyme, amino-oxyacetic acid, reversed the beneficial effects of l-Cysteine described above. These results demonstrate that l-Cysteine effectively alleviates HI injury and improves behavioral outcomes by inhibiting reactive glial responses and synaptic damage and an accompanying triggering of autophagic flux. Accordingly, l-Cysteine may provide a new a therapeutic approach for the treatment of HI via the formation of H2S.
Collapse
Affiliation(s)
- Danqing Xin
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xili Chu
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xuemei Bai
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Weiwei Ma
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Hongtao Yuan
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China; Department of Medical Psychology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Jie Qiu
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China; Department of Medical Psychology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Changxing Liu
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Tong Li
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xin Zhou
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Wenqiang Chen
- Shandong University Qilu Hospital, Jinan, Shandong, PR China
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
24
|
刘 川, 林 春, 郭 培, 张 昕, 朱 晓. [Exposure to propofol down-regulates myelin basic protein expression in zebrafish embryos: its neurotoxicity on oligodendrocytes and the molecular mechanisms]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1115-1120. [PMID: 30377113 PMCID: PMC6744183 DOI: 10.12122/j.issn.1673-4254.2018.09.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the mechanism underlying propofol- induced down-regulation of myelin basic protein (MBP) in zebrafish embryos. METHODS Zebrafish embryos (6-48 h post-fertilization [hpf]) were randomized into 4 equal groups for exposure to dimethyl sulfoxide (DMSO), 20 μg/mL propofol, 30 μg/mL propofol, or no particular treatment (control group). The larvae were collected at 48 or 72 hpf for detecting the mRNA levels of MBP, Olig1, Olig2, and Sox10 using qRT-PCR (n=80). The protein expression of MBP was quantitatively detected using Western blotting (n=80), and the apoptosis of the oligodendrocytes was investigated using TUNEL staining (n=6). RESULTS Exposure to 20 and 30 μg/mL propofol caused significant reductions in the mRNA expressions of Olig1, Olig2, and Sox10 at 48 and 72 hpf (P < 0.05) and also in MBP mRNA and protein levels at 72 hpf (P < 0.05). Exposure to 30 μg/mL propofol induced more obvious reduction in MBP protein expression than 20 μg/mL propofol at 72 hpf (P < 0.05), and the exposures resulted in a significant increase of oligodendrocyte apoptosis at 72 hpf (P < 0.05). CONCLUSIONS Propofol exposure reduces MBP expression at both the mRNA and protein levels in zebrafish embryos by down-regulating the expressions of Olig1, Olig2 and Sox10 mRNA levels and increasing apoptosis of the oligodendrocytes.
Collapse
Affiliation(s)
- 川 刘
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 春水 林
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 培培 郭
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 昕 张
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓勤 朱
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
25
|
Xiao Y, Zhou L, Tu Y, Li Y, Liang Y, Zhang X, Lv J, Zhong Y, Xie Y. Dexmedetomidine attenuates the propofol-induced long-term neurotoxicity in the developing brain of rats by enhancing the PI3K/Akt signaling pathway. Neuropsychiatr Dis Treat 2018; 14:2191-2206. [PMID: 30214209 PMCID: PMC6118247 DOI: 10.2147/ndt.s169099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Propofol induces short- and long-term neurotoxicity. Our previous study showed that dexmedetomidine (Dex) can attenuate the propofol-induced acute neurotoxicity in rodents by enhancing the PI3K/Akt signaling. However, whether treatment of young rats with Dex could protect them from long-term neurotoxicity induced by propofol is unclear. MATERIALS AND METHODS Seven-day-old male Sprague Dawley rats were randomized and injected intraperitoneally with saline (100 μL, NS), propofol (100 mg/kg), Dex (75 μg/kg), propofol (100 mg/kg) plus Dex (25, 50 or 75 μg/kg), 10% dimethyl sulfoxide (DMSO, 100 μL) or TDZD-8 (a GSK3β inhibitor, 1 mg/kg), or intracerebroventricularly with DMSO (5 μL) or LY294002 (a PI3K inhibitor, 25 μg/5 μL DMSO). Other rats in the experimental group were injected with the same doses of propofol, Dex and LY294002 or TDZD-8. All the rats were monitored until they were 9 weeks old. Their spatial learning and memory were tested by Morris water maze. The neuronal apoptosis, expression of PSD95, expression and phosphorylation of Akt and GSK3β and synaptic ultrastructures were determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, immunohistochemistry, Western blot and transmission electron microscopy assays, respectively. RESULTS Compared with the NS control group, young rats injected with intralipid, Dex, TDZD-8, LY294002 or DMSO alone did not show any significant change as they aged. Propofol significantly increased the escape latency time, hippocampal neuroapoptosis and synaptic ultrastructural changes but decreased the relative levels of PSD95 expression, and Akt and GSK3β phosphorylation in the developing hippocampus of the rats. The neuronal toxic effects of propofol were significantly mitigated by the pretreatment with a higher dose of Dex. The neuroprotective effect of Dex was enhanced by the treatment with TDZD-8, but was completely abrogated by the treatment with LY294002. CONCLUSION Our results indicated that the pretreatment of young rats with Dex attenuated the propofol-induced long-term neurotoxicity in their developing hippocampus by enhancing the PI3K/Akt signaling.
Collapse
Affiliation(s)
- Yong Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China,
| | - Lifang Zhou
- Department of Anesthesiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Youbing Tu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China,
| | - Yuantao Li
- Department of Anesthesiology, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Yubing Liang
- Department of Anesthesiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xu Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China,
| | - Jing Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China,
| | - Yu Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China,
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China,
| |
Collapse
|
26
|
Monni L, Ghezzi F, Corsini S, Nistri A. Neurotoxicity of propofol on rat hypoglossal motoneurons in vitro. Neurosci Lett 2017; 655:95-100. [PMID: 28676256 DOI: 10.1016/j.neulet.2017.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/15/2017] [Accepted: 06/22/2017] [Indexed: 01/26/2023]
Abstract
Although propofol is a widely used intravenous general anaesthetic, many studies report its toxic potential, particularly on the developing central nervous system. We investigated its action on hypoglossal motoneurons (HMs) that control two critical functions in neonates, namely tongue muscle activity and airway patency. Thus, clinically relevant concentrations of propofol (1 and 5μM) were applied (4h) to neonatal rat brainstem slices to evaluate the expression of apoptosis-inducing factor (AIF) as biomarker of toxicity. This anaesthetic strongly increased AIF in the cytoplasm and the nucleus, without early loss of HMs. Electrophysiological recordings from HMs showed that propofol (5μM) enhanced GABA- and glycine-evoked current amplitude and lengthened GABAergic current decay time. Propofol also depressed NMDA receptor-mediated responses without affecting AMPA receptors. Since GABA and glycine depolarize neonatal HMs, we propose that the damaging action by propofol on these motoneurons might arise from the facilitated action of these transmitters with subsequent cytoplasmic Ca2+ overload. This phenomenon, in turn, may trigger cell death mechanisms manifested as increased expression of AIF and its translocation into the nucleus. Since propofol is also employed for induction and maintenance of paediatric surgery, caution is needed because its potential neurotoxicity might negatively impact neurodevelopment.
Collapse
Affiliation(s)
- Laura Monni
- Department of Neuroscience, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy.
| | - Filippo Ghezzi
- Department of Neuroscience, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy.
| | - Silvia Corsini
- Department of Neuroscience, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy.
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), via Bonomea, 265, 34136 Trieste, Italy.
| |
Collapse
|