1
|
Mukai M, Uchida K, Inoue G, Satoh M, Miyagi M, Yokozeki Y, Hirosawa N, Matsuura Y, Ohtori S, Takaso M. Nerve decompression surgery suppresses TNF-ɑ expression and T cell infiltration in a rat sciatic nerve chronic constriction injury model. J Orthop Res 2022; 40:2537-2545. [PMID: 35072295 DOI: 10.1002/jor.25280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/16/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Decompression surgery (DS) is a standard treatment for chronic nerve compression injuries; however, the mechanisms underlying its effects remain unclear. Here, we investigated the effects of DS on messenger RNA (mRNA) expression of tumor necrosis factor-α (TNF-α) and T cell recruitment in a rat sciatic nerve (SN) chronic constriction injury (CCI) model. Male Wistar rats were subjected to CCI to establish a model of SN injury (CCI group). DS, in which all ligatures were removed, was performed 3 days after CCI surgery (CCI + dec group). Mechanical sensitivity was assessed using the von Frey test 3, 7, and 14 days after the CCI surgery. Gene expression of Tnfa, Cd3, Cxcl10, and immunolocalization of TNF-α and the pan T cell marker, CD3, was evaluated using quantitative polymerase chain reaction (qPCR) and immunohistochemistry, respectively. In addition, the effects of TNF-α on Cxcl10 expression and CXCL10 protein production were evaluated using qPCR and enzyme-linked immunosorbent assay in SN cell culture. Rats that received DS had significantly higher withdrawal threshold levels than those in the CCI group. In addition, Tnfa, Cd3, and Cxcl10 mRNA expression increased following CCI. DS suppressed this elevated expression, with the CCI + dec group showing significantly reduced expression levels compared to the CCI group. Furthermore, TNF-α induced Cxcl10 expression and CXCL10 protein production in SN cell culture. Therefore, DS reduced TNF-α expression and T cell recruitment in the rat SN CCI model. These observations may partly explain the mechanism underlying the therapeutic effects of DS.
Collapse
Affiliation(s)
- Michiaki Mukai
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan.,Shonan University of Medical Sciences Research Institute, Chigasaki City, Kanagawa, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Yuji Yokozeki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Naoya Hirosawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Matsuura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| |
Collapse
|
2
|
Chang C, Liu HK, Yeh CB, Yang ML, Liao WC, Liu CH, Tseng TJ. Cross-Talk of Toll-Like Receptor 5 and Mu-Opioid Receptor Attenuates Chronic Constriction Injury-Induced Mechanical Hyperalgesia through a Protein Kinase C Alpha-Dependent Signaling. Int J Mol Sci 2021; 22:1891. [PMID: 33673008 PMCID: PMC7918001 DOI: 10.3390/ijms22041891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Recently, Toll-like receptors (TLRs), a family of pattern recognition receptors, are reported as potential modulators for neuropathic pain; however, the desired mechanism is still unexplained. Here, we operated on the sciatic nerve to establish a pre-clinical rodent model of chronic constriction injury (CCI) in Sprague-Dawley rats, which were assigned into CCI and Decompression groups randomly. In Decompression group, the rats were performed with nerve decompression at post-operative week 4. Mechanical hyperalgesia and mechanical allodynia were obviously attenuated after a month. Toll-like receptor 5 (TLR5)-immunoreactive (ir) expression increased in dorsal horn, particularly in the inner part of lamina II. Additionally, substance P (SP) and isolectin B4 (IB4)-ir expressions, rather than calcitonin-gene-related peptide (CGRP)-ir expression, increased in their distinct laminae. Double immunofluorescence proved that increased TLR5-ir expression was co-expressed mainly with IB4-ir expression. Through an intrathecal administration with FLA-ST Ultrapure (a TLR5 agonist, purified flagellin from Salmonella Typhimurium, only the CCI-induced mechanical hyperalgesia was attenuated dose-dependently. Moreover, we confirmed that mu-opioid receptor (MOR) and phospho-protein kinase Cα (pPKCα)-ir expressions but not phospho-protein kinase A RII (pPKA RII)-ir expression, increased in lamina II, where they mostly co-expressed with IB4-ir expression. Go 6976, a potent protein kinase C inhibitor, effectively reversed the FLA-ST Ultrapure- or DAMGO-mediated attenuated trend towards mechanical hyperalgesia by an intrathecal administration in CCI rats. In summary, our current findings suggest that nerve decompression improves CCI-induced mechanical hyperalgesia that might be through the cross-talk of TLR5 and MOR in a PKCα-dependent manner, which opens a novel opportunity for the development of analgesic therapeutics in neuropathic pain.
Collapse
Affiliation(s)
- Ching Chang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
| | - Hung-Kai Liu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
| | - Chao-Bin Yeh
- Department of Emergency Medicine, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan;
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan
| | - Ming-Lin Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
- Department of Medical Education, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
- Department of Medical Education, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan
| | - Chiung-Hui Liu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
- Department of Medical Education, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan; (C.C.); (H.-K.L.); (M.-L.Y.); (W.-C.L.); (C.-H.L.)
- Department of Medical Education, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan
| |
Collapse
|
3
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|