1
|
Gao B, Qu M, Jiang Y, Li W, Wang M, Pei C, Zheng D, Yang C, Miao Y. Fractional Anisotropy is a More Sensitive Diagnostic Biomarker Than Mean Kurtosis for Patients with Parkinson Disease with Cognitive Dysfunction: A Diffusional Kurtosis Map Tract-Based Spatial Statistics Study. AJNR Am J Neuroradiol 2024; 45:1098-1105. [PMID: 38991767 PMCID: PMC11383405 DOI: 10.3174/ajnr.a8297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/16/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND PURPOSE There is heterogeneity of white matter damage in Parkinson's disease patients with different cognitive states. Our aim was to find sensitive diffusional kurtosis imaging biomarkers to differentiate the white matter damage pattern of mild cognitive impairment and dementia. MATERIALS AND METHODS Nineteen patients with Parkinson disease with mild cognitive impairment and 18 patients with Parkinson disease with dementia were prospectively enrolled. All participants underwent MR examination with 3D-T1-weighted image and diffusional kurtosis imaging sequences. Demographic data were compared between the 2 groups. Voxelwise statistical analyses of diffusional kurtosis imaging parameters were performed using tract-based spatial statistics. The receiver operator characteristic curve of significantly different metrics was graphed. The correlation of significantly different metrics with global cognitive status was analyzed. RESULTS Compared with the Parkinson disease with mild cognitive impairment group, the fractional anisotropy and mean kurtosis values decreased in 4 independent clusters in the forceps minor, forceps major, inferior fronto-occipital fasciculus, and the inferior and superior longitudinal fasciculus in patients with Parkinson disease with dementia; the mean diffusivity decreased in 1 cluster in the forceps minor. The fractional anisotropy value in the inferior fronto-occipital fasciculus and inferior longitudinal fasciculus would be the diffusional kurtosis imaging marker for the differential diagnosis of Parkinson disease with mild cognitive impairment and patients with Parkinson disease with dementia, with the best diagnostic efficiency of 0.853. The fractional anisotropy values in the forceps minor (β = 84.20, P < .001) and years of education (β = 0.38, P = .014) were positively correlated with the Montreal Cognitive Assessment. CONCLUSIONS The diffusional kurtosis imaging-derived fractional anisotropy and mean kurtosis can detect the different white matter damage patterns of Parkinson disease with mild cognitive impairment and Parkinson disease with dementia. Fractional anisotropy is more sensitive than mean kurtosis in the differential diagnosis; fractional anisotropy derived from diffusional kurtosis imaging could become a promising imaging marker for the differential diagnosis of Parkinson disease with mild cognitive impairment and Parkinson disease with dementia.
Collapse
Affiliation(s)
- Bingbing Gao
- From the Department of Radiology (B.G., M.Q., Y.J., W.l., M.W., C.Y., Y.M), The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingrui Qu
- From the Department of Radiology (B.G., M.Q., Y.J., W.l., M.W., C.Y., Y.M), The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuhan Jiang
- From the Department of Radiology (B.G., M.Q., Y.J., W.l., M.W., C.Y., Y.M), The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wanyao Li
- From the Department of Radiology (B.G., M.Q., Y.J., W.l., M.W., C.Y., Y.M), The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Man Wang
- From the Department of Radiology (B.G., M.Q., Y.J., W.l., M.W., C.Y., Y.M), The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenhui Pei
- Department of Neurology (C.P.), The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dandan Zheng
- Philips Healthcare, Clinical &Technique Support (D.Z.), Beijing, China
| | - Chao Yang
- From the Department of Radiology (B.G., M.Q., Y.J., W.l., M.W., C.Y., Y.M), The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Miao
- From the Department of Radiology (B.G., M.Q., Y.J., W.l., M.W., C.Y., Y.M), The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Yang K, Wu Z, Long J, Li W, Wang X, Hu N, Zhao X, Sun T. White matter changes in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:150. [PMID: 37907554 PMCID: PMC10618166 DOI: 10.1038/s41531-023-00592-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). It is characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and the formation of Lewy bodies (LBs). Although PD is primarily considered a gray matter (GM) disease, alterations in white matter (WM) have gained increasing attention in PD research recently. Here we review evidence collected by magnetic resonance imaging (MRI) techniques which indicate WM abnormalities in PD, and discuss the correlations between WM changes and specific PD symptoms. Then we summarize transcriptome and genome studies showing the changes of oligodendrocyte (OLs)/myelin in PD. We conclude that WM abnormalities caused by the changes of myelin/OLs might be important for PD pathology, which could be potential targets for PD treatment.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China.
| | - Zhengqi Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Jie Long
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Wenxin Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Xi Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Ning Hu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
3
|
Müller-Nedebock AC, Dekker MCJ, Farrer MJ, Hattori N, Lim SY, Mellick GD, Rektorová I, Salama M, Schuh AFS, Stoessl AJ, Sue CM, Tan AH, Vidal RL, Klein C, Bardien S. Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:110. [PMID: 37443150 DOI: 10.1038/s41531-023-00535-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
The biological basis of the neurodegenerative movement disorder, Parkinson's disease (PD), is still unclear despite it being 'discovered' over 200 years ago in Western Medicine. Based on current PD knowledge, there are widely varying theories as to its pathobiology. The aim of this article was to explore some of these different theories by summarizing the viewpoints of laboratory and clinician scientists in the PD field, on the biological basis of the disease. To achieve this aim, we posed this question to thirteen "PD experts" from six continents (for global representation) and collated their personal opinions into this article. The views were varied, ranging from toxin exposure as a PD trigger, to LRRK2 as a potential root cause, to toxic alpha-synuclein being the most important etiological contributor. Notably, there was also growing recognition that the definition of PD as a single disease should be reconsidered, perhaps each with its own unique pathobiology and treatment regimen.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Marieke C J Dekker
- Department of Internal Medicine, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Matthew J Farrer
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nobutaka Hattori
- Research Institute of Disease of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0106, Japan
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - George D Mellick
- Griffith Institute of Drug Discovery (GRIDD), Griffith University, Brisbane, QLD, Australia
| | - Irena Rektorová
- First Department of Neurology and International Clinical Research Center, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Applied Neuroscience Research Group, CEITEC, Masaryk University, Brno, Czech Republic
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo (AUC), New Cairo, 11835, Egypt
- Faculty of Medicine, Mansoura University, Dakahleya, Egypt
- Atlantic Senior Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland
| | - Artur F S Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Department of Medicine (Division of Neurology), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Carolyn M Sue
- Neuroscience Research Australia; Faculty of Medicine, University of New South Wales; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst; Department of Neurology, Prince of Wales Hospital, South Eastern Sydney Local Health District, Randwick, NSW, Australia
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rene L Vidal
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany.
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
4
|
Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Neuroinflammation and Mitochondrial Dysfunction in Parkinson's Disease: Connecting Neuroimaging with Pathophysiology. Antioxidants (Basel) 2023; 12:1411. [PMID: 37507950 PMCID: PMC10375976 DOI: 10.3390/antiox12071411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
There is a pressing need for disease-modifying therapies in patients suffering from neurodegenerative diseases, including Parkinson's disease (PD). However, these disorders face unique challenges in clinical trial designs to assess the neuroprotective properties of potential drug candidates. One of these challenges relates to the often unknown individual disease mechanisms that would, however, be relevant for targeted treatment strategies. Neuroinflammation and mitochondrial dysfunction are two proposed pathophysiological hallmarks and are considered to be highly interconnected in PD. Innovative neuroimaging methods can potentially help to gain deeper insights into one's predominant disease mechanisms, can facilitate patient stratification in clinical trials, and could potentially map treatment responses. This review aims to highlight the role of neuroinflammation and mitochondrial dysfunction in patients with PD (PwPD). We will specifically introduce different neuroimaging modalities, their respective technical hurdles and challenges, and their implementation into clinical practice. We will gather preliminary evidence for their potential use in PD research and discuss opportunities for future clinical trials.
Collapse
Affiliation(s)
- Benjamin Matís Pizarro-Galleguillos
- Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Pavlova I, Drazanova E, Kratka L, Amchova P, Macicek O, Starcukova J, Starcuk Z, Ruda-Kucerova J. Laterality in functional and metabolic state of the bulbectomised rat brain detected by ASL and 1H MRS: A pilot study. World J Biol Psychiatry 2022; 24:414-428. [PMID: 36102141 DOI: 10.1080/15622975.2022.2124450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Pilot study validating the animal model of depression - the bilateral olfactory bulbectomy in rats - by two nuclear magnetic resonance methods, indirectly detecting the metabolic state of the brain. Furthermore, the study focussed on potential differences in brain laterality. METHODS Arterial spin labelling assessed cerebral brain flow in prefrontal, sensorimotor, and piriform cortices, nucleus accumbens, hippocampus, thalamus, circle of Willis, and whole brain. Proton magnetic resonance spectroscopy provided information about relative metabolite concentrations in the cortex and hippocampus. RESULTS Arterial spin labelling found no differences in cerebral perfusion in the group comparison but revealed lateralisation in the thalamus of the control group and the sensorimotor cortex of the bulbectomized rats. Lower Cho/tCr and Cho/NAA levels were found in the right hippocampus in bulbectomized rats. The differences in lateralisation were shown in the hippocampus: mI/tCr in the control group, Cho/NAA, NAA/tCr, Tau/tCr in the model group, and in the cortex: NAA/tCr, mI/tCr in the control group. CONCLUSION Olfactory bulbectomy affects the neuronal and biochemical profile of the rat brain laterally and, as a model of depression, was validated by two nuclear magnetic resonance methods.
Collapse
Affiliation(s)
- Iveta Pavlova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Drazanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.,Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Macicek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Starcukova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zenon Starcuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Jiang YY, Zhong ZL, Zuo M. Three-dimensional arterial spin labeling and diffusion kurtosis imaging in evaluating perfusion and infarct area size in acute cerebral ischemia. World J Clin Cases 2022; 10:5586-5594. [PMID: 35979093 PMCID: PMC9258361 DOI: 10.12998/wjcc.v10.i17.5586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/01/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early thrombolytic therapy is crucial to treat acute cerebral infarction, especially since the onset of thrombolytic therapy takes 1-6 h. Therefore, early diagnosis and evaluation of cerebral infarction is important.
AIM To investigate the diagnostic value of magnetic resonance multi-delay three-dimensional arterial spin labeling (3DASL) and diffusion kurtosis imaging (DKI) in evaluating the perfusion and infarct area size in patients with acute cerebral ischemia.
METHODS Eighty-four patients who experienced acute cerebral ischemia from March 2019 to February 2021 were included. All patients in the acute stage underwent magnetic resonance-based examination, and the data were processed by the system’s own software. The apparent diffusion coefficient (ADC), average diffusion coefficient (MD), axial diffusion (AD), radial diffusion (RD), average kurtosis (MK), radial kurtosis (fairly RK), axial kurtosis (AK), and perfusion parameters post-labeling delays (PLD) in the focal area and its corresponding area were compared. The correlation between the lesion area of cerebral infarction under MK and MD and T2-weighted imaging (T2WI) was analyzed.
RESULTS The DKI parameters of focal and control areas in the study subjects were compared. The ADC, MD, AD, and RD values in the lesion area were significantly lower than those in the control area. The MK, RK, and AK values in the lesion area were significantly higher than those in the control area. The MK/MD value in the infarct lesions was used to determine the matching situation. MK/MD < 5 mm was considered matching and MK/MD ≥ 5 mm was considered mismatching. PLD1.5s and PLD2.5s perfusion parameters in the central, peripheral, and control areas of the infarct lesions in MK/MD-matched and -unmatched patients were not significantly different. PLD1.5s and PLD2.5s perfusion parameter values in the central area of the infarct lesions in MK/MD-matched and -unmatched patients were significantly lower than those in peripheral and control areas. The MK and MD maps showed a lesion area of 20.08 ± 5.74 cm2 and 22.09 ± 5.58 cm2, respectively. T2WI showed a lesion area of 19.76 ± 5.02 cm2. There were no significant differences in the cerebral infarction lesion areas measured using the three methods. MK, MD, and T2WI showed a good correlation.
CONCLUSION DKI parameters showed significant difference between the focal and control areas in patients with acute ischemic cerebral infarction. 3DASL can effectively determine the changes in perfusion levels in the lesion area. There was a high correlation between the area of the infarct lesions diagnosed by DKI and T2WI.
Collapse
Affiliation(s)
- Yan-Yan Jiang
- Department of Magnetic Resonance, Wuhan Asia General Hospital, Wuhan 430056, Hubei Province, China
| | - Zhi-Lin Zhong
- Department of Radiology, Wuhan Yaxin General Hospital, Wuhan 430056, Hubei Province, China
| | - Min Zuo
- Department of Radiology, Wuhan Hanyang Hospital, Wuhan University of Science and Technology, Wuhan 430050, Hubei Province, China
| |
Collapse
|
7
|
Wang X, Tong B, Hui R, Hou C, Zhang Z, Zhang L, Xie B, Ni Z, Cong B, Ma C, Wen D. The Role of Hyperthermia in Methamphetamine-Induced Depression-Like Behaviors: Protective Effects of Coral Calcium Hydride. Front Mol Neurosci 2022; 14:808807. [PMID: 35058751 PMCID: PMC8764150 DOI: 10.3389/fnmol.2021.808807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (METH) abuse causes irreversible damage to the central nervous system and leads to psychiatric symptoms including depression. Notably, METH-induced hyperthermia is a crucial factor in the development of these symptoms, as it aggravates METH-induced neurotoxicity. However, the role of hyperthermia in METH-induced depression-like behaviors needs to be clarified. In the present study, we treated mice with different doses of METH under normal (NAT) or high ambient temperatures (HAT). We found that HAT promoted hyperthermia after METH treatment and played a key role in METH-induced depression-like behaviors in mice. Intriguingly, chronic METH exposure (10 mg/kg, 7 or 14 days) or administration of an escalating-dose (2 ∼ 15 mg/kg, 3 days) of METH under NAT failed to induce depression-like behaviors. However, HAT aggravated METH-induced damage of hippocampal synaptic plasticity, reaction to oxidative stress, and neuroinflammation. Molecular hydrogen acts as an antioxidant and anti-inflammatory agent and has been shown to have preventive and therapeutic applicability in a wide range of diseases. Coral calcium hydride (CCH) is a newly identified hydrogen-rich powder which produces hydrogen gas gradually when exposed to water. Herein, we found that CCH pretreatment significantly attenuated METH-induced hyperthermia, and administration of CCH after METH exposure also inhibited METH-induced depression-like behaviors and reduced the hippocampal synaptic plasticity damage. Moreover, CCH effectively reduced the activity of lactate dehydrogenase and decreased malondialdehyde, TNF-α and IL-6 generation in hippocampus. These results suggest that CCH is an efficient hydrogen-rich agent, which has a potential therapeutic applicability in the treatment of METH abusers.
Collapse
Affiliation(s)
- Xintao Wang
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Bonan Tong
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Congcong Hou
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Zilu Zhang
- The First Clinical Medical College of Peking University Health Science Center, Peking University, Beijing, China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Zhiyu Ni
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
- *Correspondence: Chunling Ma,
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
- Di Wen,
| |
Collapse
|
8
|
Khairnar A, Ruda-Kucerova J, Arab A, Hadjistyllis C, Sejnoha Minsterova A, Shang Q, Chovsepian A, Drazanova E, Szabó N, Starcuk Z, Rektorova I, Pan-Montojo F. Diffusion kurtosis imaging detects the time-dependent progress of pathological changes in the oral rotenone mouse model of Parkinson's disease. J Neurochem 2021; 158:779-797. [PMID: 34107061 DOI: 10.1111/jnc.15449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/20/2023]
Abstract
Clinical diagnosis of Parkinson's disease (PD) occurs typically when a substantial proportion of dopaminergic neurons in the substantia nigra (SN) already died, and the first motor symptoms appear. Therefore, tools enabling the early diagnosis of PD are essential to identify early-stage PD patients in which neuroprotective treatments could have a significant impact. Here, we test the utility and sensitivity of the diffusion kurtosis imaging (DKI) in detecting progressive microstructural changes in several brain regions of mice exposed to chronic intragastric administration of rotenone, a mouse model that mimics the spatiotemporal progression of PD-like pathology from the ENS to the SN as described by Braak's staging. Our results show that DKI, especially kurtosis, can detect the progression of pathology-associated changes throughout the CNS. Increases in mean kurtosis were first observed in the dorsal motor nucleus of the vagus (DMV) after 2 months of exposure to rotenone and before the loss of dopaminergic neurons in the SN occurred. Remarkably, we also show that limited exposure to rotenone for 2 months is enough to trigger the progression of the disease in the absence of the environmental toxin, thus suggesting that once the first pathological changes in one region appear, they can self-perpetuate and progress within the CNS. Overall, our results show that DKI can be a useful radiological marker for the early detection and monitoring of PD pathology progression in patients with the potential to improve the clinical diagnosis and the development of neuroprotective treatments.
Collapse
Affiliation(s)
- Amit Khairnar
- Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, India
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Anas Arab
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Alzbeta Sejnoha Minsterova
- Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Qi Shang
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Chovsepian
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Nikoletta Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary.,Multi-modal and Functional Neuroimaging Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zenon Starcuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irena Rektorova
- Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Francisco Pan-Montojo
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Sejnoha Minsterova A, Klobusiakova P, Pies A, Galaz Z, Mekyska J, Novakova L, Nemcova Elfmarkova N, Rektorova I. Patterns of diffusion kurtosis changes in Parkinson's disease subtypes. Parkinsonism Relat Disord 2020; 81:96-102. [DOI: 10.1016/j.parkreldis.2020.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 01/10/2023]
|
10
|
Postnatal Guinea Pig Brain Development, as Revealed by Magnetic Resonance and Diffusion Kurtosis Imaging. Brain Sci 2020; 10:brainsci10060365. [PMID: 32545593 PMCID: PMC7349860 DOI: 10.3390/brainsci10060365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
This study used in vivo magnetic resonance imaging (MRI) to identify age dependent brain structural characteristics in Dunkin Hartley guinea pigs. Anatomical T2-weighted images, diffusion kurtosis (DKI) imaging, and T2 relaxometry measures were acquired from a cohort of male guinea pigs from postnatal day (PND) 18–25 (juvenile) to PND 46–51 (adolescent) and PND 118–123 (young adult). Whole-brain diffusion measures revealed the distinct effects of maturation on the microstructural complexity of the male guinea pig brain. Specifically, fractional anisotropy (FA), as well as mean, axial, and radial kurtosis in the corpus callosum, amygdala, dorsal-ventral striatum, and thalamus significantly increased from PND 18–25 to PND 118–123. Age-related alterations in DKI measures within these brain regions paralleled the overall alterations observed in the whole brain. Age-related changes in FA and kurtosis in the gray matter-dominant parietal cerebral cortex and dorsal hippocampus were less pronounced than in the other brain regions. The regional data analysis revealed that between-age changes of diffusion kurtosis metrics were more pronounced than those observed in diffusion tensor metrics. The age-related anatomical differences reported here may be important determinants of the age-dependent neurobehavior of guinea pigs in different tasks.
Collapse
|
11
|
Affiliation(s)
- B Hansen
- Center of Functionally Integrative Neuroscience Aarhus University Aarhus, Denmark
| |
Collapse
|
12
|
Hansen B. Diffusion Kurtosis Imaging as a Tool in Neurotoxicology. Neurotox Res 2019; 37:41-47. [PMID: 31422570 DOI: 10.1007/s12640-019-00100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
This commentary serves as an introduction to the magnetic resonance imaging (MRI) technique called diffusion kurtosis imaging (DKI) employed in the study by Arab et al. in the present issue of Neurotoxicology Research. In their study, DKI is employed for longitudinal investigation of a methamphetamine intoxication model of Parkinson's disease. The study employs an impressive number of animals and combines DKI with behavioral analysis at multiple time points. The commentary discusses some aspects of the study design especially the strength of combining behavioral analysis with MRI in an effort to provide as thorough a characterization and validity assessment of the animal model and cohort as possible. The potential clinical value of combining multiple MRI techniques (multimodal MRI) in PD is discussed as well as the benefit of multimodal MRI combined with behavioral analysis and subsequent histological analysis for in-depth characterization of animal models.
Collapse
Affiliation(s)
- Brian Hansen
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark.
| |
Collapse
|