1
|
Cesário FRAS, de França JC, Pereira AF, Dias DBS, de Oliveira AR, Costa AS, Alves APNN, de Alencar NMN, de Oliveira HD, Vale ML. Analgesic and neuroprotective effect of a lipid transfer protein isolated from Morinda citrifolia L. (noni) seeds on oxaliplatin-induced peripheral sensory neuropathy in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04216-6. [PMID: 40304749 DOI: 10.1007/s00210-025-04216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Oxaliplatin, a 3rd-generation platinum compound, has a dose-limiting effect: neurotoxicity manifests as peripheral sensory neuropathy (PNS). Many studies have assessed the different pharmacological properties of a lipid transfer protein isolated from Morinda citrifolia L. (McLTP1) seeds. This study aimed to evaluate the analgesic and neuroprotective effects of McLTP1 on oxaliplatin-induced peripheral sensory neuropathy in mice and the mechanisms involved. Male Swiss mice received oxaliplatin twice a week for 28 days. McLTP1 (1 to 4 mg/kg, p.o.) was administered 60 min before oxaliplatin injection. Mechanical and cold allodynia were assessed once a week via electronic von Frey and acetone tests. TRPA1 and TRPM8 receptor agonists were applied intraplantarly to the hind paw to evaluate their involvement in the antiallodynic mechanism of McLTP1. ATF3 and c-Fos expression was assessed in the dorsal root ganglia (DRG) or spinal cord (SC) to investigate nociceptive pathway activation and neurotoxic injury. MDA and GSH assays were performed in the sciatic nerve and spinal cord, and histological analysis was performed in the sciatic nerve. Total and differential leukocyte counts were analyzed in the peripheral blood. McLTP1 prevented the mechanical and cold allodynia and increase in c-Fos and ATF3 expression induced by oxaliplatin in the DRG and SC, possibly involving TRPM8 receptors. McLTP1 prevented the oxidative stress caused by oxaliplatin in the sciatic nerve and spinal cord and the histological changes associated with oxaliplatin in the sciatic nerve. McLTP1 inhibited leukopenia, mainly lymphopenia caused by oxaliplatin. McLTP1 prevents oxaliplatin-induced peripheral sensory neuropathy through its antiallodynic, antioxidant and neuroprotective properties.
Collapse
Affiliation(s)
| | - Jonas Costa de França
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Diego Bernardo Souza Dias
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Rocha de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Andrea Santos Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará - UFC, R. Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil
| | - Nylane Maria Nunes de Alencar
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará - UFC, R. Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil
| | - Hermógenes David de Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici Prof. Prisco Bezerra, Fortaleza, CE, Brazil
| | - Mariana Lima Vale
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
- Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará - UFC, R. Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, CE, 60430-275, Brazil.
| |
Collapse
|
2
|
de Sousa LM, de Figueiredo Costa AC, Pereira AF, da Silva Martins C, de Oliveira Filho OV, Goes P, Vale ML, Gondim DV. Temporomandibular joint arthritis increases canonical Wnt pathway expression in the articular cartilage and trigeminal ganglion in rats. Bone Rep 2023; 18:101649. [PMID: 36700243 PMCID: PMC9869417 DOI: 10.1016/j.bonr.2022.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Abstract
The canonical Wnt pathway participates in inflammatory diseases and it is involved in neuropathic pain. This study evaluated the immunoexpression of the canonical Wnt signaling pathway in the articular cartilage of the temporomandibular joint (TMJ) and along the nociceptive trigeminal pathway in arthritic rats. For this, male Wistar rats were divided into Control (C) and Arthritic (RA) groups. Arthritis induction was performed through subcutaneous injection of methylated bovine serum albumin (mBSA) and complete Freund Adjuvant (CFA)/ Incomplete Freund Adjuvant (IFA) on the first 14 days (once a week), followed by 3 weekly intra-articular injections of mBSA (10 μl/joint; left TMJ). The following parameters were evaluated: nociceptive threshold, inflammatory infiltrate, type I and III collagen birefringence, immunohistochemistry for IL-1β, TNF-α, IL-6, Wnt10b, β-catenin, cyclin-D1 in articular cartilage, c-Myc in synovial membrane, and immunofluorescence analysis for c-Fos, Wnt-10b and β-catenin in the trigeminal ganglion and the trigeminal subnucleus caudalis. The RA group showed intense articular cartilage damage with proliferation of type III collagen, increased immunoexpression of proinflammatory cytokines and Wnt-10b, β-catenin and cyclin-D1 in the articular cartilage and c-Myc in the synovial membrane. In the RA group, a reduction in the nociceptive threshold was observed, followed by a significant increase in the expression of Wnt-10b in neurons and β-catenin in satellite cells of the trigeminal ganglion. c-Fos immunoexpression was observed in neurons, peripherally and centrally, in arthritic rats. Our data demonstrated that TMJ arthritis in rats causes articular cartilage damage and nociceptive behavior, with increased immunoexpression of canonical Wnt pathway in the articular cartilage and trigeminal ganglion.
Collapse
Affiliation(s)
- Luane Macêdo de Sousa
- Postgraduate Program in Morphofunctional Sciences, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | - Anamaria Falcão Pereira
- Postgraduate Program in Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Conceição da Silva Martins
- Postgraduate Program in Morphofunctional Sciences, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | - Paula Goes
- Postgraduate Program in Morphofunctional Sciences, Faculty of Medicine, Federal University of Ceará, Brazil
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Brazil
| | - Mariana Lima Vale
- Postgraduate Program in Morphofunctional Sciences, Faculty of Medicine, Federal University of Ceará, Brazil
- Postgraduate Program in Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Delane Viana Gondim
- Postgraduate Program in Morphofunctional Sciences, Faculty of Medicine, Federal University of Ceará, Brazil
- Postgraduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Brazil
- Corresponding author at: Department of Morphology, Faculty of Medicine, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, CEP: 60430-170 Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Matsuura K, Sakai A, Watanabe Y, Mikahara Y, Sakamoto A, Suzuki H. Endothelin receptor type A is involved in the development of oxaliplatin-induced mechanical allodynia and cold allodynia acting through spinal and peripheral mechanisms in rats. Mol Pain 2021; 17:17448069211058004. [PMID: 34894846 PMCID: PMC8679041 DOI: 10.1177/17448069211058004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oxaliplatin, a platinum-based chemotherapeutic agent, frequently causes severe
neuropathic pain typically encompassing cold allodynia and long-lasting mechanical
allodynia. Endothelin has been shown to modulate nociceptive transmission in a variety of
pain disorders. However, the action of endothelin varies greatly depending on many
variables, including pain causes, receptor types (endothelin type A (ETA) and B
(ETB) receptors) and organs (periphery and spinal cord). Therefore, in this
study, we investigated the role of endothelin in a Sprague–Dawley rat model of
oxaliplatin-induced neuropathic pain. Intraperitoneal administration of bosentan, a dual
ETA/ETB receptor antagonist, effectively blocked the development
or prevented the onset of both cold allodynia and mechanical allodynia. The preventive
effects were exclusively mediated by ETA receptor antagonism. Intrathecal
administration of an ETA receptor antagonist prevented development of
long-lasting mechanical allodynia but not cold allodynia. In marked contrast, an
intraplantar ETA receptor antagonist had a suppressive effect on cold allodynia
but only had a partial and transient effect on mechanical allodynia. In conclusion,
ETA receptor antagonism effectively prevented long-lasting mechanical
allodynia through spinal and peripheral actions, while cold allodynia was prevented
through peripheral actions.
Collapse
Affiliation(s)
- Kae Matsuura
- Department of Anesthesiology, 26367Nippon Medical School, Bunkyo-ku, Japan.,Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Atsushi Sakai
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Yuji Watanabe
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Yasunori Mikahara
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, 26367Nippon Medical School, Bunkyo-ku, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, 26367Nippon Medical School, Bunkyo-ku, Japan
| |
Collapse
|
4
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:1393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393&set/a 813269399+839900579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
5
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021. [DOI: 10.3390/ijms22031393
expr 945913974 + 948698388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
6
|
Kawashiri T, Mine K, Kobayashi D, Inoue M, Ushio S, Uchida M, Egashira N, Shimazoe T. Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:ijms22031393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
Affiliation(s)
- Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
- Correspondence: ; Tel.: +81-92-642-6573
| | - Keisuke Mine
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Mizuki Inoue
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Soichiro Ushio
- Department of Pharmacy, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Mayako Uchida
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan;
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan;
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| |
Collapse
|