1
|
Bingül İ, Kalayci R, Tekkeşin MS, Olgac V, Bekpinar S, Uysal M. Chenodeoxycholic acid alleviated the cyclosporine-induced nephrotoxicity by decreasing oxidative stress and suppressing renin-angiotensin system through AT2R and ACE2 mRNA upregulation in rats. J Mol Histol 2024; 56:23. [PMID: 39627449 DOI: 10.1007/s10735-024-10308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/04/2024] [Indexed: 02/07/2025]
Abstract
Oxidative stress, inflammation and renin-angiotensin system (RAS) activation play an important role in the nephrotoxicity which is caused by the long-term use of the immunosuppressive drug cyclosporine (CsA). This study investigates whether chenodeoxycholic acid (CDCA), an endogenous farnesoid X receptor (FXR) agonist with antioxidant and anti-inflammatory effects, modulates CsA nephrotoxicity. CsA (25 mg/kg/day; s.c.) was administered to rats for 12 days. CDCA (20 mg/kg/day; i.p.) injection was started 3 days before CsA and continued for 15 days. CDCA improved renal damage and function in CsA-administered rats. Renal function markers in serum, renal histology, oxidative stress, inflammation and RAS components were determined in kidney. CDCA reduced CsA-induced renal increases in NADPH oxidase 4 and NADPH oxidase 2 mRNA expressions, oxidative stress and inflammation. CDCA elevated renal FXR, small heterodimer partner-1, hypoxia-inducible factor and vascular endothelial growth factor and nuclear factor erythroid 2-related factor mRNA expressions in CsA rats. It prevents renin angiotensin system activation by reducing angiotensin II (Ang-II) levels in serum and upregulating renal mRNA expressions of Ang II type-II receptor (AT2R) and angiotensin converting enzyme 2 (ACE2), but not AT1R and ACE in CsA rats. Our results indicate that CDCA may be a protective agent against CsA-nephrotoxicity by decreasing inflammation, oxidative stress and RAS activation via AT2R and ACE2 upregulations.
Collapse
Affiliation(s)
- İlknur Bingül
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Rivaze Kalayci
- Department of Laboratory Animal Science Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Merva Soluk Tekkeşin
- Department of Oral Pathology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Vakur Olgac
- Department of Oral Pathology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Seldag Bekpinar
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mujdat Uysal
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Han P, Zhao X, Li X, Geng J, Ni S, Li Q. Pathophysiology, molecular mechanisms, and genetics of atrial fibrillation. Hum Cell 2024; 38:14. [PMID: 39505800 DOI: 10.1007/s13577-024-01145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
The development of atrial fibrillation (AF) is a highly complex, multifactorial process involving pathophysiologic mechanisms, molecular pathway mechanisms and numerous genetic abnormalities. The pathophysiologic mechanisms including altered ion channels, abnormalities of the autonomic nervous system, inflammation, and abnormalities in Ca2 + handling. Molecular pathway mechanisms including, but not limited to, renin-angiotensin-aldosterone (RAAS), transforming growth factor-β (TGF-β), oxidative stress (OS). Although in clinical practice, the distinction between types of AF such as paroxysmal and persistent determines the choice of treatment options. However, it is the pathophysiologic alterations present in AF that truly determine the success of AF treatment and prognosis, but even more so the molecular mechanisms and genetic alterations that lie behind them. One tiny clue reveals the general trend, and small beginnings show how things will develop. This article will organize the development of these mechanisms and their interactions in recent years.
Collapse
Affiliation(s)
- Pan Han
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinxin Zhao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xuexun Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jing Geng
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Shouxiang Ni
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Qiao Li
- Department of Diagnostic Ultrasound, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
3
|
Gao C, Hu ZH, Cui ZY, Jiang YC, Dou JY, Li ZX, Lian LH, Nan JX, Wu YL. Angelica dahurica extract and its effective component bergapten alleviated hepatic fibrosis by activating FXR signaling pathway. J Nat Med 2024; 78:427-438. [PMID: 38334900 DOI: 10.1007/s11418-024-01780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
Angelica dahurica (A. dahurica) has a wide range of pharmacological effects, including analgesic, anti-inflammatory and hepatoprotective effects. In this study, we investigated the effect of A. dahurica extract (AD) and its effective component bergapten (BG) on hepatic fibrosis and potential mechanisms. Hepatic fibrosis was induced by intraperitoneal injection with carbon tetrachloride (CCl4) for 1 week, and mice were administrated with AD or BG by gavage for 1 week before CCl4 injection. Hepatic stellate cells (HSCs) were stimulated by transforming growth factor-β (TGF-β) and cultured with AD, BG, GW4064 (FXR agonist) or Guggulsterone (FXR inhibitor). In CCl4-induced mice, AD significantly decreased serum aminotransferase, reduced excess accumulation of extracellular matrix (ECM), inhibited caspase-1 and IL-1β, and increased FXR expressions. In activated HSCs, AD suppressed the expressions of α-SMA, collagen I, and TIMP-1/MMP-13 ratio and inflammatory factors, functioning as FXR agonist. In CCl4-induced mice, BG significantly improved serum transaminase and histopathological changes, reduced ECM excessive deposition, inflammatory response, and activated FXR expression. BG increased FXR expression and inhibited α-SMA and IL-1β expressions in activated HSCs, functioning as GW4064. FXR deficiency significantly attenuated the decreasing effect of BG on α-SMA and IL-1β expressions in LX-2 cells. In conclusion, AD could regulate hepatic fibrosis by regulating ECM excessive deposition and inflammation. Activating FXR signaling by BG might be the potential mechanism of AD against hepatic fibrosis.
Collapse
Affiliation(s)
- Chong Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhong-He Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhen-Yu Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yu-Chen Jiang
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jia-Yi Dou
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Zhao-Xu Li
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Li-Hua Lian
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yan-Ling Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
4
|
Confalonieri F, Lumi X, Petrovski G. Spontaneous Epiretinal Membrane Resolution and Angiotensin Receptor Blockers: Case Observation, Literature Review and Perspectives. Biomedicines 2023; 11:1976. [PMID: 37509613 PMCID: PMC10377102 DOI: 10.3390/biomedicines11071976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Epiretinal membrane (ERM) is a relatively common condition affecting the macula. When symptoms become apparent and compromise a patient's quality of vision, the only therapeutic approach available today is surgery with a vitrectomy and peeling of the ERM. Angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) reduce the effect of angiotensin II, limit the amount of fibrosis, and demonstrate consequences on fibrinogenesis in the human body. Case Description and Materials and Methods: A rare case of spontaneous ERM resolution with concomitant administration of ARB is reported. The patient was set on ARB treatment for migraines and arterial hypertension, and a posterior vitreous detachment was already present at the first diagnosis of ERM. The scientific literature addressing the systemic relationship between ARB, ACE-Is, and fibrosis in the past 25 years was searched in the PubMed, Medline, and EMBASE databases. RESULTS In total, 38 and 16 original articles have been selected for ARBs and ACE-Is, respectively, in regard to fibrosis modulation. CONCLUSION ARBs and ACE-Is might have antifibrotic activity on ERM formation and resolution. Further clinical studies are necessary to explore this phenomenon.
Collapse
Affiliation(s)
- Filippo Confalonieri
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Xhevat Lumi
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Eye Hospital, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| |
Collapse
|
6
|
Limdi JK. Editorial commentary on the Indian Journal of Gastroenterology-March-April 2022. Indian J Gastroenterol 2022; 41:115-118. [PMID: 35522371 DOI: 10.1007/s12664-022-01261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jimmy K Limdi
- Section of Inflammatory Bowel Diseases, Division of Gastroenterology, Northern Care Alliance NHS Foundation Trust, Manchester, UK.
- University of Manchester, Manchester, UK.
- Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|